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Summary

Live concert recordings ofter features significant interference between
channels. Recently, we proposed a NFM-based algorithm reduce this effect.
However this method is too computationally demanding for full-length con-
certs.
We show how Random Projections of the data can be leveraged for effec-
tive estimation of the NMF parameters in acceptable time.

Notation and Model
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Interference Reduction goal:

∀ i and j, estimate Ŷij of the images Yij from the observation of Xi(f, t).

Hypotheses

◮ Signals from different sources are independent
◮ Neglecting phase dependencies between channels [1]

Channels are related only through their energies

Local Gaussian Model and source separation[2]:
The STFT of the image yij:

Yij (f, t) ∼ Nc (0, λij(f ) Pj(f, t))

Posterior distribution given the mixture through Wiener filtering :

Ŷij(f, t) , E [Yij(f, t) | Xi(f, t), Θ] =
λijPj(f, t)

∑J
j=1 λijPj(f, t)

Xi(f, t).

Close-mics assumption:
◮ Close-mis signals features already good separation quality
◮ Estimation only for the images of interest

Model parameter to estimate:

Θ = {Λ(f ), {Pj(f, t)}}

Music Interference Removal Algorithm - MIRA

MIRA estimates from the parameters likelihood given the observation Xi(f, t)[3]:

Θ̂← arg min
Θ

∑

f,t,i,j

dIS



Vi(f, t)‖
∑

j

λij (f ) Pj(f, t)





Nonnegative updates:

Pj (f, t)← Pj (f, t) ·

∑I
i=1 Pi (f, t)−2

Vi (f, t) λij (f )
∑I

i=1 Pi (f, t)−1
λij (f )

λij(f )← λij(f ) ·

∑T
t=1 Pi(f, t)−2Vi(f, t)Pj(f, t)
∑T

t=1 Pi(f, t)−1Pj(f, t)
Initialization:

Close-mics information is used to initialize both Λ(f ) and Pj(f, t)
Computational load

◮ Λ(f ) requires parsing the whole data
◮ Pj(f, t) can be estimated online

Random Projection - fastMIRA

Contribution

◮ Learn Λ, on a small random projection of the data
◮ Use Λ̃(f ) to estimate {Pj(f, t)}j online

♫ MIRA

♫ MIRARandom
Projecdion

MIRA

Derivation:

Mi(f, r) =
∑T

t=1 Xi(f, t) Qi(r, t) with Qi(r, t) ∼ N (0, 1) and R≪ T

Thanks to the Gaussian Model of the mixtures, it holds:

Mi(f, r) ∼ N (0,
∑

j λij(f ) Sj(f, r)) with Sj(f, r) =
∑

t Pj(f, t) Qi(r, t)2

⇒ MIRA can be used to estimate Λ on M instead of X

Experimental evaluation

Data: Power of Love by Heuy Lewys and the News

◮ Montreux Jazz Festival 2000
◮ length of 5’10"; size of 1.2 Gb.

◮ 48 kHz, 16 bit/sample
◮ 40 mics, 30 voices

1. Parameter estimation evaluation:
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◮ Already after few iteration fastMira provide similar reconstruction error
◮ After R = 64, a good estimation of Λ(f ) is achieved

2. Computational load evaluation:
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Time performance

Recordings Size Duration Time elapsed nMSE

[GB] [min] [h] [dB]

Huey Lewis... 10 55 6 h 58 min 0.767

Sigur Rós 39.2 123 16 h 41 min 0.909

Table 1: Difference in dB between 5-minute of

estimated voice images using fastMIRA on the

full-length recordings and the same portion processed

individually through MIRA. R = 512 was used.

◮ A good approximation is yielded in only few minutes
◮ This method is not particularly affected by the length of the recordings
◮ MIRA could not even run on such recordings on a studio-like workstation

Conclusion

Random Projection of the data can be leveraged for effective estimation of
the parameters. Thus, interference reduction can be achieved on full-length
live multi-track recordings in acceptable time and used by sound engineers.
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