Deep Learning for Joint-Source Channel Coding of Text

Nariman Farsad*, <u>Milind Rao</u>*, Andrea Goldsmith {nfarsad, milind, andreag}@stanford.edu

Wireless Systems Lab Stanford University

International Conference on Acoustics, Sound, and Signal Processing Calgary, 2018

Outline

Problem Description

- Model
- Performance Metrics

Deep Encoder and Decoder

3 Results

- Baselines
- Properties of the Encoding

Transmission of Text

Good channel/no rate constraint

'Advanced avians, ambulating in the ante meridiem, are advantaged in apprehending an annelid' \rightarrow 'Advanced avians, ambulating in the ante meridiem, are advantaged in apprehending an annelid'

Noisy channel/rate constrained

'Advanced avians, ambulating in the ante meridiem, are advantaged in apprehending an annelid' \rightarrow 'The early bird catches the worm'

Data

- Vocabulary $\mathcal{V} = \{`.', `94', `the', `european', \ldots\}$
- Sentence $\mathbf{s} = [w_1, w_2, \dots, w_n], \ w_i \in \mathcal{V}$ is to be transmitted

Encoder

- Encoder $\psi_{\ell}: \mathcal{V}^* \to \{0, 1\}^{\ell}$
- takes variable length sentence s
- produces $\ell-$ length binary encoding, $\mathbf{b}=\psi_\ell(\mathbf{s})$

Model Description Continued

Channel

Erasure channel with erasure probability ρ

$$\mathbf{o}_i = \begin{cases} \mathbf{b}_i & \text{w.p. } 1 - \rho \\ \text{err} & \text{w.p. } \rho \end{cases} \text{ for } i \in \{1, \dots, \ell\}$$

Decoder

- Decoder $\nu_{\ell}: \{0, 1, \operatorname{err}\}^{\ell} \to \mathcal{V}^*$
- takes channel output o
- produces sentence $\hat{\mathbf{s}} = \nu_{\ell}(\mathbf{o}) = [\hat{w}_1, \dots, \hat{w}_{\hat{n}}]$ of possibly different length

Performance Metrics

Word Accuracy

- loss = $\sum_{i=1}^{n} \mathbf{1}(w_i \neq \hat{w}_i)$
- 'An example sentence for you', 'This is an example sentence for you'. Loss = 5!

Edit Distance

- $\bullet\,$ Minimum length of sequence of insert, delete, replace operations to transform $s\to \hat{s}$
- 'An example sentence for you', 'This is an example sentence for you'. Loss = 2
- Does not capture effect of synonyms

Joint vs Separate Source-Channel Coding of Text

• Shannon: Separate source-channel coding is optimal

- ► For some (eg. ergodic and memoryless) channels
- Infinite block lengths and delay
- No limit on code complexity
- We propose a deep neural network for joint SC coding
 - Goal: Convey semantic information of a sentence
 - Deep NLP Neural networks capture complicated language probability models
 - Contrast with prior deep NLP (eg. Google translate) focus on compression

Outline

Problem Description

- Model
- Performance Metrics

2 Deep Encoder and Decoder

3 Results

- Baselines
- Properties of the Encoding

Deep Learning Architecture

Building Block: Glove Word Embeddings

 200dimensional vectors represent meaning of words

 Need to combine word vectors to form a sentence vector

Farsad*, Rao*, & Goldsmith (Stanford)

Deep Learning Architecture

Encoder

- Robust sequential autoencoder
- Sentences of any length are mapped to a binary encoding of fixed length
- 2 Channel
 - Channel implemented using dropout
 - Can be expanded to other channels AWGN, binary symmetric channel, etc
- Oecoder
 - At each point, decoder outputs logits/probability of words p(w)
 - Cross-entropy loss

$$\mathsf{Loss}_i = \sum_{w \in \mathcal{V}} -\mathbf{1}(w_i = w) \log p(w)$$

Performance improved by using beam decoder

Outline

Problem Description

- Model
- Performance Metrics

- Baselines
- Properties of the Encoding

Baselines for Comparison

Source-Coding or compression:

- Universal compressor (gzip):
 - Reaches entropic limit in the asymptote
 - Needs large (30+) batches of sentences, not single one
- Huffman coding
- 5 bit encoding for characters

Channel-coding through Reed-Solomon codes.

Errors

- If number of bits/sentence is low: part of sentence cannot be transmitted
- Channel decoding error: whole sentence lost for Huffman, universal coding

Examples of Deep Joint SC Errors

Punctuation	TX: efficiency what efficiency ?
error	
	RX: efficiency , what efficiency ?
Rephrasing	TX: tourism serves as a source of income to totalitarian regimes .
	RX: tourism has become a source of income to totalitarian regimes .
Rephrasing	TX: a few wealthy individuals compared with millions living in hunger .
	RX: a few wealthy individuals face with millions living in hunger .
Tense Er-	TX: a communist country riding roughshod over human rights .
ror	
	RX: a communist country rides roughshod over human rights .
An inexpli-	TX: i listened to colleagues who mentioned bicycles .
cable error	
	RX: i listened to colleagues who mentioned goebbels .
Long sen-	TX: there is one salient fact running through these data : the citizens
tence	want more information and have chosen television as the best means to
	receive that information .
	RX: there is one glaring weaknesses , by the communication : the citi-
	zens want more information and hold ' television as the means to receive
	this information .

Results

In very rate constrained regimes - deep NN outperforms baselines

Impact of Fixed Length Encoding

Farsad*, Rao*, & Goldsmith (Stanford)

Deep Joint SC

Properties of the Encoding

Summary and Future Work

- Proposed robust autoencoder based joint source-channel coding for text
- Encoding is done in a *sentence space*
- Recovery of information more important than exact sentence recovery
- Scheme outperforms baselines when number of bits per sentence is low

Future Work

- Rethink performance metrics
- Variable length encoding
- Other kinds of structured data: audio, speech, video