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Problem statement
Affine structure from sound [1]

- Joint localization of a microphone array and loudspeakers

- Far field assumption: plane accoustic waves

Problem formulation
D=A"X+el'

where
1. D c RE*Y is the measurement matrix

2. A € R**% s the projection matrix

cosfy ... cosfg
A=|". .
sinfly ... sinfg
3. X € R**¥ s the coordinate matrix
yr. ... YN
4. ¢ € R"® is the offset vector
-
C = [61 ce CK]

Incomplete and noisy D
D=Wo(D+ Z)
where W e R**¥ is a binary mask matrix

and Z € R* > contains independent noise realizations

Algorithms for missing entries
Acces to one full column in D

» Subtract it from D to remove the influence of c
- [t D complete, factor it using SVD [1] or perform the alternating
optimization [2] to estimate the unknown matrices

No full columnin D

- Our solution: consider pairwise differences between columns of D

Our algorithm

Goal

Given a subset of noisy observations of distances D, jointly recover
the points X, the column-unitary matrix A, and the translation vector
¢, such that

A

X7 Aa C = argminX,AEZ/{C,cH‘lAj - Wo (ATX T C]'T) H2

Our formulation
1. Eliminate c by observing the differences between the columns of D
2. Measurement tensor R € RE*N>N with relative distances:
Rynin = Din = D
3. Generalized mask V' € R* ¥V * N
Vienm = Wen Wi,
4. Reformulate the optimization problem as (*)

K N
X, 6 — arg min Z Z (Eknm — Vienm (Qy,,, cosOr + A, sin Hk))z ()
X0  k=1n,m=1

where A, =z, —xn,and A, = Yn — Ym.

Lnm

Proposed algorithm:

Alternate between the estimates X and 6

« Find the global optimizer of (*) over 6 for fixed X
« Find the global optimizer of (*) over X for fixed 6

Experimental results

Comparison of the proposed algorithm with

- the SVD-based estimator [1]

» the alternating optimization (AO) [2]

Peformance measurements:

- RMSE(D) (consistency) and RMSE(X) (accuracy)
Setup: V = 6 microphones, K = 5 acoustic events

Complete case: complete D corrupted with Gaussian noise
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The likelihood of the algorithms to work is depicted by transparency.
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Extension to 3D space

 Replace the polar coordinates of A with the spherical respresentation
- Add the third row to X corresponding to z-coordinates

X, é, $ — arg min Z Z Eknm — Vinm (Amnm cos 0}, sin ¢y
Xaead) k=1 n,mzl

. . 2
—Ay,, sinfgsing, — A, cos dp)

» For fixed X, minimize over 8 and @ jointly

Conclusion
A novel algorithm for structure from sound with
incomplete data which
» outperforms existing solutions
- allows larger number of missing entries
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