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Affine structure from sound [1]
• Joint localization of a microphone array and loudspeakers

• Far field assumption: plane accoustic waves 
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Miranda Kreković, Gilles Baechler, Ivan Dokmanić, and Martin Vetterli
LCAV - School of Computer and Communication Sciences - EPFL - Lausanne, Switzerland

Goal

Our formulation
1. Eliminate  by observing the differences between the columns of 
2. Measurement tensor  with relative distances:

3. Generalized mask :

4. Reformulate the optimization problem as (*)

where  and .

Proposed algorithm:
Alternate between the estimates  and 
• Find the global optimizer of (*) over  for fixed 
• Find the global optimizer of (*) over  for fixed  

Our algorithm

Comparison of the proposed algorithm with
• the SVD-based estimator [1]
• the alternating optimization (AO) [2]
Peformance measurements:
• RMSE( ) (consistency) and RMSE( ) (accuracy) 
Setup:  microphones,  acoustic events

Complete case: complete  corrupted with Gaussian noise 

a) RMSE( ) vs input SNR
b) Likelihood of the algorithms to work for a randomly created mask 
     with a given number of measurements

Missing entries: incomplete conneced  corrupted with Gaussian 
noise

a) RMSE( ) 

b) RMSE( ) 

 

The likelihood of the algorithms to work is depicted by transparency. 

Experimental results

A novel algorithm for structure from sound with 
incomplete data which
• outperforms existing solutions
• allows larger number of missing entries

Conclusion
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Problem formulation

where
1.  is the measurement matrix 

2.  is the projection matrix 
 

3.  is the coordinate matrix 
 

4.  is the offset vector

Incomplete and noisy 

where  is a binary mask matrix

and  contains independent noise realizations
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Acces to one full column in 
• Subtract it from  to remove the influence of 
• If  complete, factor it using SVD [1] or perform the alternating 

optimization [2] to estimate the unknown matrices

No full column in 
• Our solution: consider pairwise differences between columns of 

Algorithms for missing entries

 Given a subset of noisy observations of distances , jointly recover 
the points , the column-unitary matrix , and the translation vector 
, such that

• Replace the polar coordinates of  with the spherical respresentation
• Add the third row to  corresponding to -coordinates

• For fixed , minimize over  and  jointly

Extension to 3D space


