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Objectives
•Automating the labeling of structural monads
•Guarantee an invariance to gradual local deformations
•Ensure sparse representation to ease classification
•Propose a comparison of dimension reduction methodologies

Introduction

To produce sound images of underground structures, geophysics acquire, model and pro-
cess huge sets of seismic traces, ending up in stacked or migrated datasets (Fig. 1). The
latter represent (distorted because indirect) geological formations in the shape of various
seismic patterns within the wiggling bandpass nature of seismic signals. Their analysis
is of primary importance to understand the tectonic and sedimentary history of regions,
and their potential in finding hydrocarbon traps.
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Figure 1 - Migrated seismic sections, with exemplars of four instances of
structural monads: Flat, Sigmoid, Fold, Low interest.

Seismic database evaluation methodology

1 Cropping

2 Curation

3 Repetition removal

The database contains 580 exemplar images
of 512× 512 pixels divided in 4 classes as:

Classes Number of images
Flat 221
Fold 223
Sigmoid 100
Low interest 36
Total 580

Methods

The most natural manner to construct feature vectors (FVs) — to feed classifiers
— reduces to using all scattering coefficients. As they result from many couples of
orientations and scales, their size can become extremely large. Exemplar FVs depicted in
Figures 3(d-h-l) have a total length of about 1.5× 107 coefficients.
However, we observe that the FVs are highly compressible. As ScatNets are energy
preserving, the steep decay indicates thatmost of the information is carried by
very few important coefficients. Slightly differing decay regimes can be observed
across the different classes.

Tessellated scattering networks

The beauty of seismic structures is that the Sigmoid class can be viewed as a combination
of two classes: Fold and Flat and a Fold or Sigmoid behavior may slowly warp to a Flat
morphology. Hence, we extract and combine FVs from a tessellation of subparts of initial
images. This operation can be thought as a diversity enhancement to account for gradual
morphing between structural monads. In this work,
1 Images (of size 512× 512) are divided into 4× 4 = 16 non-overlapping blocks.
2 Scattering wavelet transform coefficients are extracted from each block.
3 Computing the mean of each of the convolutions was shown [2, 3] to correspond to the
energy of the convolutions.

Feature extraction
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How sparse can the
scattering transform be ?

Compressibility of ordered scattering trans-
form feature vectors in log-log-scale.

C
lassification

Figure 2 - Scattering network

Scattering transform

(a) Flat (b) S1 coef. (c) S2 coef.
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(d) Flat FV

(e) Sigmoid (f) S1 coef. (g) S2 coef.
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(h) Sigmoid FV

(i) Fold (j) S1 coef. (k) S2 coef.
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(l) Fold FV

Figure 3 - Left: exemplars for each class. Center: multi-level, angular sector
representation of a two-level scattering transform. Right: flattened feature vectors.

Results

Image input 512× 512, J=3, 8 angles, final descriptor size is 1.5 107.

Comparison of sparsification methods

Table 1 - Accuracy/computational results and comparisons for different dimension
reduction and feature extraction methods for varying training percentages.

Training 30% 50% 70% Time (s) for 50% training
Method #RFS Accuracy (%) Feat. extract. Train. Classif.

Gini 8725 62.4 64.9 65.2 7113 968 0.13
χ2 7167 57.0 61.2 61.7 5623 797 0.11
CFS 5133 69.0 69.5 70.4 4784 557 0.17
KW 3133 69.1 71.6 71.8 2126 289 0.10
mRMR 4607 75.2 76.4 77.9 5275 782 0.31
SBMLR 3265 73.8 75.1 76.1 8982 1044 0.22
Fisher 2819 80.7 81.3 82.5 1931 376 0.87
ScatNet 216 86.6 87.1 87.6 1814 54 0.47
Tessellated 3456 90.9 91.6 93.5 2214 341 0.14

To exploit redundancy in these highly sparse vectors, we first benchmark various fea-
ture selection methods [4] collected at Arizona State Universitya. The feature selec-
tion methods applied to our database are based on: Gini index [5], χ2 statistics [6],
Correlation-based Feature Selection (CFS) [7], Kruskal-Wallis (KW) [8], Minimum Re-
dundancy and Maximum Relevance (mRMR) [9], sparse multinomial logistic regression
algorithm with Bayesian regularisation (SBMLR) [10] and Fisher score [11]. Reduced fea-
ture sizes (#RFS) are globally shrunk again by an order of magnitude, toward thousands
of coefficients

Results for the best sparsification method

Table 2 - Confusion matrix for 50 % training. Horizontal: true class; vertical: assigned
class.

Flat Fold Sigmoid Low int.
Flat 103 6 2 0
Fold 5 102 3 2
Sigmoid 1 3 14 0
Low int. 1 2 0 47

Conclusion

•We adopt scattering wavelet networks as deformation and translation invariant joint
feature extractors and classifiers.

•A database with tagged structural monads is devised, drawn on public data, which
could be shared for other publishable studies.

•An extensive comparison of feature vector sdimension reduction methods for
classification is performed

•The proposed tessellated scattering decomposition is shown to be effective.
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