

Introduce

Replay Spoofing Attack to Speaker Recognition System

Automatic Replay Spoofing Attack Detection

Model

RECURRENT NEURAL NETWORKS FOR AUTOMATIC REPLAY SPOOFING ATTACK DETECTION

*Zhuxin Chen*¹, *Weibin Zhang*¹, *Zhifeng Xie*¹, *Xiangmin Xu*¹, *Dongpeng Chen*² ¹South China University of Technology, ²Shengyang Technology Company

- Genuine speech
- Spoofed speech

- Database
- **Feature** CQCC: 30 coefficients (achieved the best on ASVspoof2015) MFCC: 120 filters*, 30 cepstral coefficients Fbank: 120 filters*
- > Modelling

Model	DNN							LS	ГМ		GRU			
Feature	CQCC		MFCC		Fbank		MFCC		Fbank		MFCC		Fbank	
Dataset	DEV	EVAL	DEV	EVAL	DEV	EVAL	DEV	EVAL	DEV	EVAL	DEV	EVAL	DEV	EVAL
EER	5.44	20.36	7.59	12.87	8.09	12.13	10.06	14.42	6.88	10.98	10.39	14.18	6.32	9.81

Table 1 shows the results on ASVspoof 2017. The MFCC and Fbank features significantly outperform the CQCC feature. the GRU model with Fbank feature achieves the best EER of 9.81%, which outperforms the best feed-forward neural network by 19% relatively.

Model		D	N			LS	ΓМ		GRU			
Feature	MFCC		Fbank		MFCC		Fbank		MFCC		Fbank	
Dataset	DEV	EVAL										
ALL	1.153	2.058	0.779	2.007	0.273	2.149	0.052	1.107	0.241	1.912	0.039	1.077
RE-LP-LP	0.378	0.773	0.234	0.783	0.215	1.102	0.019	0.528	0.192	2.197	0.019	0.443
RE-LP-HQ-LP	2.905	2.534	2.213	2.308	0.425	1.893	0.122	1.182	0.39	2.038	0.114	0.752
RE-PH1-LP	0.266	1.312	0.254	0.662	0.168	0.698	0.056	0.141	0.235	0.897	0.031	0.191
RE-PH2-LP	0.128	1.002	0.065	0.908	0.063	0.568	0.018	0.209	0.055	1.734	0.019	0.267
RE-PH2-PH3	-	2.521	-	2.517	-	2.461	-	0.495	-	2.364	-	0.53
RE-LPPH2-PH3	-	2.622	-	2.994	-	3.717	-	2.32	-	3.184	-	2.592

Table 2 shows the results on BTAS 2016. The best GRU model outperforms the best DNN model by 46% relatively.

Experiment Setup

ASVspoof2017 and BTAS2016 were used.

Both the evaluation sets contain recordings with unknown replay conditions.

*Increasing to 120 filters significantly improve the recognition accuracy.

DNN: 11-frame context window, three hidden layers with 512 units and a softmax layer RNN: three recurrent layers with 256 cells and a softmax layer, sequence categorical cross-entropy loss function

Experiment Result

