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SPIRE LAB, IISc, Bangalore 3

Figure: rtMRI frames from various subjects

real-time Magnetic Resonance Imaging (rtMRI) - tool for
analyzing articulatory mechanisms in the vocal tract

Non-invasive and safe method to capture shapes of speech
articulators

More effective than other methods such as X-Ray, Ultrasound, and
Electromagnetic Articulograph
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Air-Tissue Boundaries (ATB)
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Contour#1(C1)
Contour#2(C2)
Contour#3(C3)

Figure: Air-Tissue
Boundaries

rtMRI data contains spatio-temporal
information of the varying shape of the
vocal tract and speech articulators

ATBs - contours marking boundary
between air cavity and tissue of the vocal
tract

ATBs are defined as:

Ck
4
= {(xki, yki); 1 ≤ i ≤Mk} ∀ 1 ≤ k ≤ 3

C1, C2, C3 - Upper, Lower, Pharyngeal
ATB
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1
Shrikanth Narayanan et al. ”real-time Magnetic Resonance Imaging and Electromagnetic Articulography Database for

Speech Production Research (TC)”, The Journal of the Acoustical Society of America, vol. 136, no. 3, pp. 1307-1311, 2014
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rtMRI videos taken from USC-TIMIT rtMRI database 1

2 Male (M1, M2) and 2 Female (F1, F2) subjects - 10 sentences
each

68× 68 pixel videos recorded at 23.18 frames/s

MATLAB based GUI for manually tracing ATBs of all rtMRI
frames
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Upper lip (UL), lower lip (LL), tongue base
(TB), velum tip (VEL) and glottis begin
(GLTB) were also marked for each frame

C1 - C11 (Upper Lip), C12 (Hard Palate) and
C13 (Velum)

C2 - C21 (Tongue Tip), C22 (Tongue Root) and
C23 (Lower Lip)

C31 - pharyngeal wall till GLTB
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Figure: Manually marked
ATBs
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Figure: ATB Segmentation to obtain estimated upper and lower ATBs

To estimate the Upper and Lower ATBs (Ĉ1 & Ĉ2) for a given rtMRI
video sequence ITest containing NTest frames such that the predicted
ATBs correspond to contours of maximal contrast, while maintaining
temporal smoothness across consecutive frames of ITest.
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Figure: Smoothly varying vocal tract morphology

Features of proposed supervised learning approach:

Robust to imaging artifact thus increasing accuracy

Exploits slowly varying nature of vocal tract morphology
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Fisher Discriminant based rtMRI Segmentation

Fisher Discriminant Measure of Contrast

2
Robert Keys, “Cubic Convolution Interpolation for Digital Image Processing”in IEEE transactions on Acoustics, Speech,

and Signal Processing, vol. ASSP-29, no. 6, pp. 1153–1160, 1981
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C

Cin
Cout

C

Cin
Cout

Figure: Pixel Intensities
along Cin & Cout

Consider C = {(xi, yi), 1 ≤ i ≤M} on an
image frame I

Inner contour Cin and Outer contour Cout

are constructed from C

Bicubic Interpolation 2 used for finding pixel
values along Cin and Cout
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Fisher Discriminant Measure of Contrast
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(a) (b) (c)

Figure: FDM example

The Fisher Discriminant Measure (FDM) DF (C, I) is defined as:

DF (C, I)
4
=

(Iin − Iout)2

σ2
Iin + σ2

Iout

(1)

where,

Iin, Iout = mean pixel intensities along Cin & Cout

σ2
Iin , σ

2
Iout = variance of intensities along Cin & Cout



Fisher Discriminant based rtMRI Segmentation

Measure of Proximity between Two Contours

3
Donald J Berndt and James Clifford, “Using Dynamic Time Warping to Find Patterns in Time Series”in KDD workshop,

vol. 10, no. 16, pp.359–370, 1994
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An optimal alignment map between the points of Ca and Cb is
found by the following optimization:

{(ma(l),mb(l)), 1 ≤ l ≤ L} = argmin
1≤m′

a(l)≤Ma,

1≤m′
b(l)≤Mb

L∑
l=1

||Ca(m
′
a(l))− Cb(m

′
b(l))||2

(2)

where Ca(i), Cb(j) ∈ R2 correspond to the i-th and j-th point of Ca and Cb

DD(Ca, Cb) - DTW distance 3 measures the alignment of any 2
contours (Ca, Cb)

DD(Ca, Cb)
4
=

1

L

L∑
l=1

||Ca(ma(l))− Cb(mb(l))||2 (3)
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Figure: ATB Prediction: Mapping CTr to I

ATB Prediction: task of mapping manually traced training contours
(CTr) to test rtMRI video (I)
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To obtain accurate, smoothly varying predicted contours the following
objective function is defined:

J(CTr(i), I(k)) = DF (CTr(i), I(k))+
max

1≤i′≤NTr

{J(CTr(i′), I(k − 1))− λDD(CTr(i
′), CTr(i))}

(4)

where,

I = {I(k), 1 ≤ k ≤ N}
CTr = {CTr(i), 1 ≤ i ≤ NTr}
λ = Temporal Stiffness Factor



Fisher Discriminant based rtMRI Segmentation

ATB Prediction using Dynamic Programming

SPIRE LAB, IISc, Bangalore 17

1

2

3

4

5

6

7

8

9

10

Figure: Estimating C∗ using Dynamic Programming
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ATB Prediction using Dynamic Programming
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Smoothly varying ATB, C∗, are estimated for a test rtMRI video sequence
I by selecting the best contour from the training set CTr by maximizing
the following objective function:

J(C, I) =
N∑
k=2

DF (C(k), I(k))− λDD(C(k), C(k − 1)) (5)

C∗ = {C∗(k), 1 ≤ k ≤ N} = argmax
C∈CTr

{J(C, I)} (6)

where,

I = {I(k), 1 ≤ k ≤ N}
CTr = {CTr(i), 1 ≤ i ≤ NTr}
λ = Temporal Stiffness Factor
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FDM-based rtMRI Segmentation: Overview
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Upper ATB

Estimation

Lower ATB

Estimation

FDM-based ATB Estimation
Test

rtMRI Video

Figure: Order followed while performing ATB Estimation



Fisher Discriminant based rtMRI Segmentation

Contour Stitching and Pruning
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Figure: Stitching and Pruning of Predicted ATB
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Figure: Manually traced ATBs

ATBs are estimated using five-fold cross-validation setup
separately for each subject

8 training, 2 test rtMRI videos - round-robin fashion

5 training and 3 development videos in each fold

CTr
1 and CTr

2 are obtained from the manually traced boundaries
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Evaluation of Predicted Contours
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Figure: Evaluation schemes used for experiments

Evaluation Measure: DTW Distance (DD) between predicted and
manually traced ATBs

Two kinds of evaluation performed:

Evaluation of Complete ATBs (Ĉ1 and Ĉ2)
Evaluation of Pruned ATBs (Ĉprun1 and Ĉprun2 )



Experiments and Results

Results

4
Jangwon Kim et al. “Enhanced Airway-Tissue Boundary Segmentation for real-time Magnetic Resonance Imaging Data”

in International Seminar on Speech Production, ISSP, pp. 222–225, 2014.
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Maeda Grid (MG) 4 based approach used as baseline for comparing with
proposed FDM approach

Lower ATB Upper ATB

Sub MG FDM MG FDM
F1 1.09 ± 0.22 1.02 ± 0.24 1.00 ± 0.17 0.95 ± 0.17
F2 1.28 ± 0.29 1.27 ± 0.26 1.42 ± 0.35 1.20 ± 0.22
M1 1.31 ± 0.57 1.25 ± 0.26 1.18 ± 0.19 1.10 ± 0.20
M2 1.38 ± 0.31 1.17 ± 0.28 1.37 ± 0.23 1.17 ± 0.24

Table: Ĉprun1 and Ĉprun2 prediction error in pixels (mean ± standard deviation)
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Proposed FDM Baseline MG

Figure: Improved accuracy of FDM as compared to Baseline MG

Higher accuracy of proposed approach due to robustness of Fisher
Discriminant Measure (FDM) to grainy noise

Temporal constraint ensures smoothly varying contours across
frames
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Figure: Shortfalls of FDM

Value of FDM reduces if articulators come in contact with other
tissue - may affect accuracy

FDM can only provide best fitting contour from training set - not
all configurations of articulators can be predicted
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ATB shapes learned from training data - ”best fit” approach

Temporal continuity of ATBs ensured across successive frames

Further improvement in accuracy possible - deform-able model for
estimated ATBs
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Figure: Stitching C11, C12 and C13

Parts of Upper and Lower ATBs (C∗) are stitched to form smooth con-
tours Ĉ1 & Ĉ2

Ĉ1 obtained by concatenating C∗11 (Upper Lip), C12 (Hard Palate)
and C∗13 (Velum)
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Figure: Stitching of lower contours to obtain Ĉ2

Ĉ2 obtained by stitching contours C∗21 (Tongue Tip), C∗22 (Tongue
Root) and C∗23 (Lower Lip)

Continuity of Ĉ2 maintained at junctions of C∗21, C∗22 and C∗23
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Contour 

Pruning

Figure: Contour Pruning for Ĉ1

Ĉ1 and Ĉ2 are pruned to obtain boundaries within the vocal tract

Ĉ1 pruned from UL to VEL tip and concatenated with C31 till
GLTB to obtain Ĉprun1
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Contour

Pruning

Figure: Contour Pruning for Ĉ2

Ĉ2 pruned from Lower Lip (LL) to Glottis Begin (GLTB)

Segment of Ĉ2 near tongue base (Ctb) replaced by a smooth
boundary denoted by Csm
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Figure: Smoothing Ctb to obtain Csm
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Values indicate average euclidean distance (in pixels) between
points of predicted contour and ground truth

Manually traced ATBs (CTr
1 and CTr

2 ) used as ground truth for
evaluating Ĉ1 and Ĉ2

Sub Lower ATB Upper ATB

F1 0.93 ± 0.13 0.92 ± 0.12
F2 0.99 ± 0.17 1.09 ± 0.19
M1 0.98 ± 0.16 1.13 ± 0.18
M2 0.98 ± 0.18 1.17 ± 0.25

Table: Ĉ1 and Ĉ2 prediction error in pixels (mean ± standard deviation)
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