Supervised Air-Tissue Boundary Segmentation of real-time Magnetic Resonance Imaging Video

Advait Koparkar 1 , Prasanta Kumar Ghosh 2

¹ Department of Electrical and Electronics Engineering Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India

²SPIRE LAB Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India

Section 1

1 Motivation

- 2 Database
- 3 Problem Statement
- 4 Fisher Discriminant based rtMRI Segmentation
- 5 Experiments and Results
- 6 Conclusion and Future Works

3

イロン イヨン イヨン イヨン

Motivation for Using rtMRI

- real-time Magnetic Resonance Imaging (rtMRI) tool for analyzing articulatory mechanisms in the vocal tract
- Non-invasive and safe method to capture shapes of speech articulators
- More effective than other methods such as X-Ray, Ultrasound, and Electromagnetic Articulograph

Figure: rtMRI frames from various subjects

ヘロト 人間ト 人造ト 人通ト

Air-Tissue Boundaries (ATB)

- rtMRI data contains spatio-temporal information of the varying shape of the vocal tract and speech articulators
- ATBs contours marking boundary between air cavity and tissue of the vocal tract
- ATBs are defined as:

$$C_k \stackrel{\triangle}{=} \{(x_{ki}, y_{ki}); 1 \le i \le M_k\} \ \forall \ 1 \le k \le 3$$

 $C_1,\,C_2,\,C_3$ - Upper, Lower, Pharyngeal ATB

Figure: Air-Tissue Boundaries

ヘロト 人間ト 人造ト 人通ト

Section 2

1 Motivation

- 3 Problem Statement
- 4 Fisher Discriminant based rtMRI Segmentation
- 5 Experiments and Results
- 6 Conclusion and Future Works

3

イロン イヨン イヨン イヨン

Database

- rtMRI videos taken from USC-TIMIT rtMRI database ¹
- 2 Male (M1, M2) and 2 Female (F1, F2) subjects 10 sentences each
- 68×68 pixel videos recorded at 23.18 frames/s
- MATLAB based GUI for manually tracing ATBs of all rtMRI frames

¹Shrikanth Narayanan et al. "real-time Magnetic Resonance Imaging and Electromagnetic Articulography Database for Speech Production Research (TC)", The Journal of the Acoustical Society of America vol. 136, no. 3 pp. 1307-1311 2014) .

 Upper lip (UL), lower lip (LL), tongue base (TB), velum tip (VEL) and glottis begin (GLTB) were also marked for each frame

- Upper lip (UL), lower lip (LL), tongue base (TB), velum tip (VEL) and glottis begin (GLTB) were also marked for each frame
- $C_1 C_{11}$ (Upper Lip), C_{12} (Hard Palate) and C_{13} (Velum)

- $C_1 C_{11}$ (Upper Lip), C_{12} (Hard Palate) and C_{13} (Velum)
- C₂ C₂₁ (Tongue Tip), C₂₂ (Tongue Root) and C₂₃ (Lower Lip)

- $C_1 C_{11}$ (Upper Lip), C_{12} (Hard Palate) and C_{13} (Velum)
- $C_2 C_{21}$ (Tongue Tip), C_{22} (Tongue Root) and C_{23} (Lower Lip)
- C_{31} pharyngeal wall till GLTB

Section 3

1 Motivation

2 Database

3 Problem Statement

4 Fisher Discriminant based rtMRI Segmentation

- 5 Experiments and Results
- 6 Conclusion and Future Works

3

イロト イヨト イヨト イヨト

Problem Statement: ATB Segmentation

To estimate the Upper and Lower ATBs $(\hat{\mathcal{C}}_1 \& \hat{\mathcal{C}}_2)$ for a given rtMRI video sequence \mathcal{I}_{Test} containing N_{Test} frames such that the predicted ATBs correspond to contours of **maximal contrast**, while maintaining **temporal smoothness** across consecutive frames of \mathcal{I}_{Test} .

Figure: ATB Segmentation to obtain estimated upper and lower ATBs

《口》 《圖》 《臣》 《臣》 三百

Problem Statement: ATB Segmentation

Features of proposed supervised learning approach:

- Robust to imaging artifact thus increasing accuracy
- Exploits slowly varying nature of vocal tract morphology

Figure: Smoothly varying vocal tract morphology

イロト イポト イラト イラト

Section 4

1 Motivation

- 2 Database
- 3 Problem Statement

4 Fisher Discriminant based rtMRI Segmentation

- 5 Experiments and Results
- 6 Conclusion and Future Works

イロト イヨト イヨト イヨト

Fisher Discriminant Measure of Contrast

- Consider $C = \{(x_i, y_i), 1 \le i \le M\}$ on an image frame I
- Inner contour *C*_{in} and Outer contour *C*_{out} are constructed from *C*
- Bicubic Interpolation ² used for finding pixel values along C_{in} and C_{out}

$$\begin{split} I_{in} &= \{I(x_i, y_i) \mid (x_i, y_i) \in C_{in}\} \\ I_{out} &= \{I(x_i, y_i) \mid (x_i, y_i) \in C_{out}\} \end{split}$$

Figure: Pixel Intensities along C_{in} & C_{out}

 2 Robert Keys, "Cubic Convolution Interpolation for Digital Image Processing" in IEEE transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29, no. 6, pp. 1153–1160, 1981

Fisher Discriminant Measure of Contrast

The Fisher Discriminant Measure (FDM) $\mathcal{D}_F(C, I)$ is defined as:

$$\mathcal{D}_F(C,I) \stackrel{\triangle}{=} \frac{(\overline{I_{in}} - \overline{I_{out}})^2}{\sigma^2_{I_{in}} + \sigma^2_{I_{out}}} \tag{1}$$

where,

 $\overline{I_{in}}, \overline{I_{out}} = \text{ mean pixel intensities along } C_{in} \& C_{out}$ $\sigma^2_{I_{in}}, \sigma^2_{I_{out}} = \text{ variance of intensities along } C_{in} \& C_{out}$

Figure: FDM example

Measure of Proximity between Two Contours

■ An optimal alignment map between the points of C_a and C_b is found by the following optimization:

$$\{(m_a(l), m_b(l)), 1 \le l \le L\} = \underset{\substack{1 \le m'_a(l) \le M_a, \ l=1\\ 1 \le m'_b(l) \le M_b}}{\operatorname{argmin}} \sum_{l=1}^{L} ||C_a(m'_a(l)) - C_b(m'_b(l))||_2$$
(2)

where $C_a(i)$, $C_b(j) \in \mathbb{R}^2$ correspond to the *i*-th and *j*-th point of C_a and C_b

vol. 10, no. 16, pp.359-370, 1994

SPIRE LAB, IISc, Bangalore

イロン 不得入 不良人 不良人

³Donald J Berndt and James Clifford, "Using Dynamic Time Warping to Find Patterns in Time Series" in KDD workshop,

Measure of Proximity between Two Contours

■ An optimal alignment map between the points of C_a and C_b is found by the following optimization:

$$\{(m_a(l), m_b(l)), 1 \le l \le L\} = \underset{\substack{1 \le m'_a(l) \le M_a, \\ 1 \le m'_b(l) \le M_b}}{\operatorname{argmin}} \sum_{l=1}^{L} ||C_a(m'_a(l)) - C_b(m'_b(l))||_2$$
(2)

where $C_a(i)$, $C_b(j) \in \mathbb{R}^2$ correspond to the *i*-th and *j*-th point of C_a and C_b $\mathcal{D}_D(C_a, C_b)$ - DTW distance ³ measures the alignment of any 2 contours (C_a, C_b)

$$\mathcal{D}_D(C_a, C_b) \stackrel{\triangle}{=} \frac{1}{L} \sum_{l=1}^{L} ||C_a(m_a(l)) - C_b(m_b(l))||_2$$
(3)

소리가 소리가 소문가 소문가.

³Donald J Berndt and James Clifford, "Using Dynamic Time Warping to Find Patterns in Time Series" in KDD workshop,

vol. 10, no. 16, pp.359-370, 1994

ATB Prediction using Dynamic Programming

ATB Prediction: task of mapping manually traced training contours (C^{Tr}) to test rtMRI video (\mathcal{I})

Figure: ATB Prediction: Mapping \mathcal{C}^{Tr} to \mathcal{I}

ATB Prediction using Dynamic Programming

To obtain accurate, smoothly varying predicted contours the following objective function is defined:

$$J(\mathcal{C}^{Tr}(i), \mathcal{I}(k)) = \mathcal{D}_F(\mathcal{C}^{Tr}(i), \mathcal{I}(k)) + \max_{1 \le i' \le N_{Tr}} \{ J(\mathcal{C}^{Tr}(i'), \mathcal{I}(k-1)) - \lambda \mathcal{D}_D(\mathcal{C}_{Tr}(i'), \mathcal{C}_{Tr}(i)) \}$$

$$(4)$$

where,

$$\mathcal{I} = \{\mathcal{I}(k), \ 1 \le k \le N\}$$
$$\mathcal{C}^{Tr} = \{\mathcal{C}^{Tr}(i), \ 1 \le i \le N_{Tr}\}$$
$$\lambda = \text{Temporal Stiffness Factor}$$

Ξ

Fisher Discriminant based rtMRI Segmentation

ATB Prediction using Dynamic Programming

イロン イヨン イヨン イヨン

Figure: Estimating \mathcal{C}^* using Dynamic Programming

=

ATB Prediction using Dynamic Programming

Smoothly varying ATB, C^* , are estimated for a test rtMRI video sequence \mathcal{I} by selecting the best contour from the training set C^{Tr} by maximizing the following objective function:

$$J(\mathcal{C},\mathcal{I}) = \sum_{k=2}^{N} \mathcal{D}_{F}(\mathcal{C}(k),\mathcal{I}(k)) - \lambda \mathcal{D}_{D}(\mathcal{C}(k),\mathcal{C}(k-1))$$
(5)
$$\mathcal{C}^{*} = \{\mathcal{C}^{*}(k), 1 \le k \le N\} = \underset{\mathcal{C}\in\mathcal{C}^{Tr}}{\operatorname{argmax}}\{J(\mathcal{C},\mathcal{I})\}$$
(6)

where,

$$\mathcal{I} = \{\mathcal{I}(k), \ 1 \le k \le N\}$$
$$\mathcal{C}^{Tr} = \{\mathcal{C}^{Tr}(i), \ 1 \le i \le N_{Tr}\}$$
$$\lambda = \text{Temporal Stiffness Factor}$$

イロト 不得入 不良人 不良人

FDM-based rtMRI Segmentation: Overview

Figure: Order followed while performing ATB Estimation

《日》 《圖》 《문》 《문》 二百

Contour Stitching and Pruning

Figure: Stitching and Pruning of Predicted ATB

Э

イロン イ押入 イヨン イヨン

Section 5

1 Motivation

- 2 Database
- 3 Problem Statement
- 4 Fisher Discriminant based rtMRI Segmentation
- 5 Experiments and Results
- 6 Conclusion and Future Works

イロト イヨト イヨト

Experimental Setup

- ATBs are estimated using five-fold cross-validation setup separately for each subject
- \blacksquare 8 training, 2 test rtMRI videos round-robin fashion
- $\blacksquare~5$ training and 3 development videos in each fold
- C_1^{Tr} and C_2^{Tr} are obtained from the manually traced boundaries

Figure: Manually traced ATBs

Evaluation of Predicted Contours

- Evaluation Measure: DTW Distance (D_D) between predicted and manually traced ATBs
- Two kinds of evaluation performed:
 - Evaluation of Complete ATBs $(\hat{C}_1 \text{ and } \hat{C}_2)$
 - Evaluation of Pruned ATBs $(\hat{\mathcal{C}}_1^{prun} \text{ and } \hat{\mathcal{C}}_2^{prun})$

Figure: Evaluation schemes used for experiments

Results

Maeda Grid (MG) 4 based approach used as baseline for comparing with proposed FDM approach

	Lower	ATB	Upper ATB	
Sub	MG	FDM	MG	FDM
F1	1.09 ± 0.22	1.02 ± 0.24	1.00 ± 0.17	0.95 ± 0.17
F2	1.28 ± 0.29	1.27 ± 0.26	1.42 ± 0.35	1.20 ± 0.22
M1	1.31 ± 0.57	1.25 ± 0.26	1.18 ± 0.19	1.10 ± 0.20
M2	1.38 ± 0.31	1.17 ± 0.28	1.37 ± 0.23	1.17 ± 0.24

Table: $\hat{\mathcal{C}}_1^{prun}$ and $\hat{\mathcal{C}}_2^{prun}$ prediction error in pixels (mean \pm standard deviation)

⁴ Jangwon Kim et al. "Enhanced Airway-Tissue Boundary Segmentation for real-time Magnetic Resonance Imaging Data" in International Seminar on Speech Production, ISSP, pp. 222–225, 2014.

Results

- Higher accuracy of proposed approach due to robustness of Fisher Discriminant Measure (FDM) to grainy noise
- Temporal constraint ensures smoothly varying contours across frames

Figure: Improved accuracy of FDM as compared to Baseline MG

Results

- Value of FDM reduces if articulators come in contact with other tissue - may affect accuracy
- FDM can only provide best fitting contour from training set not all configurations of articulators can be predicted

Figure: Shortfalls of FDM

Section 6

1 Motivation

- 2 Database
- 3 Problem Statement
- 4 Fisher Discriminant based rtMRI Segmentation
- 5 Experiments and Results
- 6 Conclusion and Future Works

イロン イヨン イモン イモン

Conclusion and Future Works

- ATB shapes learned from training data "best fit" approach
- Temporal continuity of ATBs ensured across successive frames
- Further improvement in accuracy possible deform-able model for estimated ATBs

イロト イポト イヨト イヨト

Thank you

Advait Koparkar

advaitkoparkar@gmail.com

The authors thank the Pratiksha Trust for their support.

3

《日》 《圖》 《臣》 《臣》

Appendix: Contour Stitching

Parts of Upper and Lower ATBs ($\mathcal{C}^*)$ are stitched to form smooth contours $\hat{\mathcal{C}}_1$ & $\hat{\mathcal{C}}_2$

*Ĉ*₁ obtained by concatenating *C*^{*}₁₁ (Upper Lip), *C*₁₂ (Hard Palate)
 and *C*^{*}₁₃ (Velum)

Figure: Stitching \mathcal{C}_{11} , \mathcal{C}_{12} and \mathcal{C}_{13}

Appendix: Contour Stitching

- $\hat{\mathcal{C}}_2$ obtained by stitching contours \mathcal{C}_{21}^* (Tongue Tip), \mathcal{C}_{22}^* (Tongue Root) and \mathcal{C}_{23}^* (Lower Lip)
- Continuity of $\hat{\mathcal{C}}_2$ maintained at junctions of \mathcal{C}_{21}^* , \mathcal{C}_{22}^* and \mathcal{C}_{23}^*

Appendix: Contour Pruning

 $\hat{\mathcal{C}}_1$ and $\hat{\mathcal{C}}_2$ are pruned to obtain boundaries within the vocal tract

*Ĉ*₁ pruned from UL to VEL tip and concatenated with *C*₃₁ till

 GLTB to obtain *Ĉ*₁^{prun}

Figure: Contour Pruning for $\hat{\mathcal{C}}_1$

ヘロト ヘアト ヘビト ヘビト

Appendix: Contour Pruning

- \hat{C}_2 pruned from Lower Lip (LL) to Glottis Begin (GLTB)
- Segment of \hat{C}_2 near tongue base (C_{tb}) replaced by a smooth boundary denoted by C_{sm}

Figure: Contour Pruning for $\hat{\mathcal{C}}_{2^{n}}$, $\mathcal{C}_{2^{n}}$

Appendix: Contour Pruning

Figure: Smoothing C_{tb} to obtain C_{sm}

Appendix: Full ATB Evaluation

- Values indicate average euclidean distance (in pixels) between points of predicted contour and ground truth
- Manually traced ATBs $(C_1^{Tr} \text{ and } C_2^{Tr})$ used as ground truth for evaluating \hat{C}_1 and \hat{C}_2

Sub	Lower ATB	Upper ATB
F1	0.93 ± 0.13	0.92 ± 0.12
F2	0.99 ± 0.17	1.09 ± 0.19
M1	0.98 ± 0.16	1.13 ± 0.18
M2	0.98 ± 0.18	1.17 ± 0.25

Table: $\hat{\mathcal{C}}_1$ and $\hat{\mathcal{C}}_2$ prediction error in pixels (mean \pm standard deviation)

イロト イポト イヨト イヨト