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Motivation

Goal: To improve the accuracy of the wake word
detector on the Amazon device

Focus of this work: Incorporate monophone-based units
to model the non-keyword background
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Figure 1: The two-stage wake word detector
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Figure 2: A simplified 1*' stage HMM decoding graph
for the wake word “Alexa”

Foreground HMM: wake word phone states
Background HMM: speech and non-speech states loop
Acoustic Model: Deep Neural Network (DNN)

Decoder: Viterbi decoding on the graph
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Wake Word Hypothesized: When difference in foreground and
background log likelihoods exceeds a threshold

» 15t stage DET curve: Tune weight on arcs and states

2"d Stage Classifier
» Second Stage Feature Vector

o Obtained from 1% stage wake word hypothesis

o Captures info from the whole candidate segment (e.g.
segment duration, likelihood etc.)

Captures info related to each phone segment
(e.g. phone duration, confidence scores etc.)

» Use a small feed-forward Neural Network (NN) for

experiments

New Wake Word System Using Monophone-based
Background Modeling

New 15t Stage DNN-HMM Decoder
» New Background HMM:

o Expand speech, non-speech events to various monophones

o Becomes a phone-level unigram FST

» New Acoustic Model: background targets expanded

Figure 3: A simplified 1*' stage monophone-based background HMM.

3-state HMM topology is actually used

New Feature Engineering for 2"d Stage Classifier

» Baseline second stage features are still valid

» Extra Features: new scores measuring the degree of match
between each candidate’s wake word phone segment p and
every background monophone q.

p S wake word phOIleS! {SILPreceding, AX—BAlema, LAlema,, EHAlea:a, KAlema,, SAlema, AX-EAlema,}
q € background monophones: {SIL,SPN,NSN, PAU, AA,AFE,...Y,ZH,7Z}
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Obtain match score for each candidate’s wake word phone p
with respect to every background monophone g

Distinguish better between real wake words and confusable
segments among first stage candidates

New Info from Monophone units (e.g. for Ljey.):
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Figure 4: Extracting extra information from first stage wake word
hypothesis using monophone based units for background

Experiment Results

Baseline Setup
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Several thousand hours of real far-field data for training
Approximately 30,000 wake word instances in dev/test set

A feed-forward DNN acoustic model at the first stage

Features: Log Mel-Filter-Bank Energies (LFBE) (20 frames for left

context and 10 frames for right context)

Wake word task (50 targets) multi-task trained with LVCSR targets [1]

The GPU-based distributed DNN trainer utilized [2]
The second stage feature vector is of dimension 67

A small feedforward NN as the second stage classifier

Changes for Monophone-based System Setup

» Use 44 monophones in the background model

» Background HMM changes to be a phone-level unigram FST

» DNN output targets for the wake word task is expanded

» The second stage feature vector is of dimension 375 (67+7x44)

15t Stage HMM Tuning

» Performance: The two systems are almost the same at this stage

» Operating points picked for building 2"9 stage classifier:

o recall at around 0.02 for both systems

End-to-end Evaluation
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Figure 5: End-to-end comparison of the baseline wake word system and the new

system using monophone-based background modeling (1*' stage DNN size

recorded in the legend, 2x64 for 2" stage NN); DET curves on test set; Axis of
the false alarm rate is obscured due to the sensitive nature of this information

lable 1: Summary of different wake word systesms

FRR FAR # of
(Fix FAR=2y) | (Fix FRR=0.04) | Params

SP/NSP(4x896) 0.051 3.71y 3.02M
SP/NSP(4x1024) 0.050 3.43y 3.84M
Monophone (4x896) 0.043 2.35y 3.15M
Monophone (4x1024) 0.042 2.31y 3.99M

Effectiveness of the 29 stage

DET curves (one stage Vs. two stages on monophone)
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Figure 6: Comparison of the performance with and without 2nd stage
classifier (2x64 NN), DET curves on test set; Axis of the false alarm rate is
obscured due to the sensitive nature of this information

Conclusion
» Propose a new way to model the non-keyword part.

o Expand the speech/non-speech events to more
specific monophone-based units at the first stage.

o Extract extra match scores for final detection

» The new system reduces FAR by 37% when the FRR
level is maintained.

» On the other hand, it reduces FRR by about 16% if
FAR level is fixed.

The second stage itself is able to reduce FAR by 67%
relatively on top of 15 stage hypothesis.
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