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Why is overlap detection challenging?

Overlap segments comprise of speech from more than one talker (shown in Fig. 3).
• Occur in multi-talker conversational speech setting, such as meetings, debates, and
broadcast news.

• Usually small in duration, have speech and non-speech overlaps, overlapping talkers
energy ratio is time-varying, and the far-field recordings contain reverberation and
ambient noise.

• Acoustic features characterizing overlap segments are not well defined.
Accurate overlap detection can improve analysis of conversational speech recordings.

Figure 1: Synthetically overlapped speech segments.

Proposed idea

� Feature designing for overlap detection is complicated. To circumvent this we propose
using:
• time-frequency representations, namely, mel-spectrograms and gammatone
spectrograms as features

• a context of 100 msec to obtain decision on every 10 msec short-time segment
• deep learning architectures for classification.
� To train and test the approaches we use: (i) synthetically designed overlaps using
TIMIT dataset, (ii) AMI corpus, and (iii) forced aligned AMI corpus.

Prior art

• make use of handcrafted features such as sample kurtosis (kurt), spectral-flatness
measure (SFM), MFCCs, and harmonicity, etc.

• model single and overlap speech classes using GMMs
• perform poorly on conversational speech recordings

Table 1: Detection accuracy % with GMMs (Baseline approach) [1].

Dataset Features Single Overlap Avg.
TIMIT kurt.+SFM+MFCC+D 59.6 69.4 64.5
AMI kurt.+SFM+MFCC+D 43.1 61.9 52.5

Our Contribution

The previous work on overlap detection used guassian mixture models (GMMs) with
a variety of handcrafted features.
We show that,
• instead of designing specialized features, spectrograms can be used,
• recurrent networks models like LSTM are effective in overlap detection.
We perform evaluation on,
• synthetically designed overlap speech dataset built from the TIMIT dataset, and
meeting conversations from the augmented meeting interaction (AMI) corpus.

Results show that,
• proposed approach perform better than existing methods,
• usefulness extends to meeting conversations,
• Viterbi decoding with the posteriors from the network boost accuracy.
• improved overlap detection benefits speaker diarization.
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Figure 2: Proposed LSTM architecture for overlap detection.

Evaluation

• Label the dataset into 3 classes - single speaker, overlap and filler
• Experiment with DNNs, CNNs, and LSTMs.
• Use data augmentation for AMI corpus using synthesized TIMIT overlaps, in
training.

Results

Table 2: Detection accuracy % with fbank features
Model TIMIT Dataset AMI Dataset

Single Overlap Avg. Single Overlap Avg.
DNN[3 layers] 73.0 87.0 79.9 56.3 73.0 64.7
lstm[512 cells] 73.7 83.1 78.4 76.0 60.6 68.4
blstm[256 cells] 78.7 79.5 78.9 51.4 75.3 63.4
blstm[512 cells] 72.5 87.0 79.7 58.3 71.8 65.1

Conv [1 layer]-lstm[512 cells] 89.8 52.0 71.8 49.5 74.5 62.0
Conv [3 layers]-lstm[512 cells] 87.0 63.0 74.9 57.8 68.0 63.0

Table 3: Detection accuracy % on AMI Meeting Dataset using different features with the LSTM model.

Features Single Overlap Avg.
gammatone 66.3 75.1 70.7

gammatone + kurt.+SFM 67.9 73.5 70.7
fbank + kurt.+SFM 79.1 62.3 70.7

Figure 3: t-SNE scatter plots of input fbank features with context (11×64) and the LSTM 1st layer
activation, for single speaker and overlap frames.

Table 4: Detection accuracy %
Model AMI Dataset (force aligned) with fbank features

Single Overlap Avg.
DNN[3 layers] 63.9 78.0 70.9

CNN2D[3 layers] 73.0 63.8 68.4
lstm[512 cells] 77.0 68.0 72.5
blstm[256 cells] 68.9 75.4 72.1
blstm[512 cells] 57.8 79.0 68.4

Conv[1 layer]-lstm[512] 36.3 87.4 61.8
Conv[3 layer]-lstm[512] 39.3 87.2 63.2

lstm[512 cells][without data aug] 66.37 69.23 67.8
lstm + Viterbi decode 87.9 71.0 79.4

Figure 4: Diarization error rate (DER) % on AMI meetings obtained for different approaches to handle
overlap segments.
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