# REINFORCEMENT LEARNING OF SPEECH RECOGNITION SYSTEM

## BASED ON POLICY GRADIENT AND HYPOTHESIS SELECTION



Taku Kato, Takahiro Shinozaki, Tokyo Institute of Technology, Japan

#### Overview

#### Background

- Today's automatic speech recognition (ASR) systems heavily rely on supervised training using large amounts of taskmatched training data
- The cost of transcribing speech data is repeatedly required to support new languages and new tasks
- A system would become more self-sufficient and useful if it possessed the ability to learn from very light feedback from
- Our contribution
- Formulate a general reinforcement learning framework for ASR systems based on the policy gradient method
- Propose a hypothesis selection method following the reinforcement learning framework, where the feedback is given by user selection of hypotheses selection

#### Related work

- User based correction of recognition errors in cloud
- PodCastle [Ogata et al., Interspeech, 2007]
- Laborious effort is required

#### Policy Gradient (PG) Method

- Assumptions
- We have a policy function f with a set of parameters  $\theta$
- Input: A state or observation s
- Output: A probability distribution  $P_f(a|s)$  of an action a
- Reward  $r_s(a)$  is given for the action
- Goal
- Maximize the expected reward  $\mathbb{E}[r_s(a)]$  with respect to  $\theta$
- · Gradient ascent based solution

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}[r_{\boldsymbol{s}}(a)|\boldsymbol{\theta}] = \mathbb{E}[r_{\boldsymbol{s}}(a)\nabla_{\boldsymbol{\theta}}\log P_f(a|\boldsymbol{s})]$$

 $\hat{\boldsymbol{\theta}} = \boldsymbol{\theta} + \varepsilon r_s(a) \nabla_{\boldsymbol{\theta}} \log P_f(a|s)$   $\varepsilon$ : The learning rate

General form of REINFORCE algorithm [Williams, 1992]

$$(r-b)\frac{\partial \log g(i)}{\partial \theta}$$
  $g(i)$ 

g(i): Neural network based policy function  $\boldsymbol{\theta}$ : Parameters of the neural network

Acoustic Language

#### Formulation of PG for statistical ASR systems

- Input s: A feature sequence of an utterance
- Action: A probability distribution of a word sequence l of recognition hypothesis
- Policy function: The whole statistical ASR system

· The probability distribution

 $P(l|s) = \frac{P_{AM}(s|l)P_{LM}(l)}{P(s)} \propto \frac{\text{model model}}{P_{AM}(s|l)} P_{LM}(l)$ 

· The gradient

 $r_s(a)\nabla_{\theta}\log P_f(a|s) = r_s(l)\nabla_{\theta}\log P_{AM}(l_t|s_t)$ 

#### Design of user feedback

- · Accuracy-based feedback
- Calculating word accuracy is difficult and time consuming for
- Selection-based feedback (Proposed method)
- Two recognition systems present hypotheses to the user
- The user selects the better hypothesis among them



#### Implementation with Approximation

- Hypothesis generation: Sampling from posterior distribution → Viterbi decoding
- Rival system
- $\rightarrow$  Use the *n*-th  $(1 \le n)$  best hypothesis of the same system as the rival hypothesis
- Hypothesis(tg) : The Candidate 1 hypothesis  $l^{(1)}$
- Hypothesis(rv) : The Candidate 2 hypothesis  $l^{(2)}$
- Parameter update: Utterance based update
  - → Large batch based update

#### Weighted gradient





Increase the difference of the likelihood between the selected hypothesis and the other hypothesis

#### **Learning Process**



#### **Experimental Conditions**

| Database                              | Corpus of Spontaneous Japanese (CSJ)                                                   |
|---------------------------------------|----------------------------------------------------------------------------------------|
| Training set (labeled)                | 10 hours                                                                               |
| Training set (unlabeled)              | 50 + 50 + 50 + 50 hours                                                                |
| Evaluation set                        | 2 hours                                                                                |
| Vocabulary size                       | 72k words                                                                              |
| Initial learning rate                 | 0.004, 0.002, 0.001 and 0.0005                                                         |
| Decoder                               | Kaldi toolkit                                                                          |
| Candidate 2 hypotheses                | 10-best results                                                                        |
| Baseline<br>(unsupervised adaptation) | Confidence measure (CM) based<br>hypothesis selection<br>(Keeps 75% of the hypotheses) |

#### **Results (without Hypotheses Selection Error)**

#### Number of stages and WERs of the large batch data





Cf. When supervised training was performed, the WER at stage 3 was 19.3%

#### Number of stages and WERs of the evaluation set





Cf. When supervised training was performed, the WER • at stage 4 was 20.6%

### Hypotheses selection error rate and WER of the selected hypotheses Candidate 2 hypotheses 28 27 Candidate 1 hypotheses 25.14 25.43

24.47

Hypotheses selection error rate[%]

24.82

**Results (with Hypotheses Selection Error)** 

#### WER of the large batches when 15% hypotheses selection error exist

25

23

25.31

23.82



#### N-best order of the 2<sup>nd</sup> hypothesis and WER. 15% selection error rate is simulated



- Formulated a policy gradient-based reinforcement learning framework for ASR systems, and proposed a hypothesis selecting-based reinforcement learning
- The proposed method reduced WER compared to the unsupervised adaptations
- Future work: Improving the stability to over-training and the learning efficiency for the user feedback