

WAVELET-BASED RECONSTRUCTION FOR UNLIMITED SAMPLING

Sunil Rudresh, Aniruddha Adiga, Basty Ajay Shenoy, and Chandra Sekhar Seelamantula Department of Electrical Engineering, Indian Institute of Science, Bangalore - 560012, India Email: {sunilr, aaniruddha, bastys}@iisc.ac.in, chandra.sekhar@ieee.org

SPECTRUM LAB

1. Overview

Self-reset analog-to-digital converter (SR-ADC):

4.	Discrete-Domain Analysis

$$y(nT) = \mathcal{M}_{\lambda}\{x(nT)\} = x(nT) - z(nT)$$

Annihilation of a sampled polynomial of degree p: $\sum_{n \in \mathbb{Z}} n^k g[n] = 0$, for $k \in [0, p]$.

Compactly supported g[n]: Daubechies filter of order p with support [[0, 2p - 1]].

5. Main Result: WAVE-BUS
NAVE-BUS: WAVElet-Based Unlimited
Sampling
Lemma 3 Let $u(t) = \mathcal{M}_{\lambda} \{x(t)\}$. where

Lemma 3 Let $y(t) = \mathcal{M}_{\lambda}\{x(t)\}$, where x(t) is a Lipschitz-continuous signal that satisfies $|x(a) - x(b)| \le L|b - a|$. Then, we have $\tilde{T}_f := \frac{2\lambda}{L} \le T_f$. Proof: From Lipschitz continuity,

An illustration of the transfer characteristics of a clipping-ADC and a self-reset-ADC with the thresholds at $\pm\lambda$.

$$\begin{split} & \frac{\text{Output:}}{y(t)} = \mathcal{M}_{\lambda}\{x(t)\} := \text{mod}\left(x(t) + \lambda, 2\lambda\right) - \lambda, \\ & = x(t) - z(t), \end{split}$$

where $z(t) = \sum_{k} \alpha_k \mathbf{1}_{[t_k, t_{k+1}]}(t)$ is a piecewise-constant signal.

Modulo operation: (a) Input signal x(t) and its modulo version y(t); and (b) piecewise-constant signal z(t).

Lemma 2 Let x[n] be the samples of a polynomial of degree p, and let g[n] be a discrete wavelet filter with p + 1 vanishing moments. Then, $y_g[n] := (y * g)[n] =$ $\sum_k \beta_k m[n - n_k]$ with $\beta_k = (\alpha_k - \alpha_{k-1})$ and $m[n] := -\sum_{k=-\infty}^n g[k]$. $\underline{Computing \{n_k\}}:$ LASSO: $\arg \min = \|\mathbf{y}_g - \mathbf{Ah}\|_2^2 + \gamma \|\mathbf{h}\|_1$ A - convolutional dictionary of time-shifted versions of m[n] $|x(t+\tilde{T}_f) - x(t)| \leq L\tilde{T}_f < 2\lambda, \ \forall t.$ Hence, at any t_k , no folding happens in the interval $(t_k, t_k + \tilde{T}_f)$. Thus, $\tilde{T}_f \leq T_f$.

• Sufficient condition for exact reconstruction: Sampling interval $T \leq \frac{T_f}{2p} \leq \frac{2\lambda}{L(2p)}$.

6. Reconstruction Algorithm

Algorithm 1 : WAVE-BUS.

• Input:
$$y(nT) = \mathcal{M}_{\lambda}\{x(nT)\}, L, \lambda, p, T$$

- Output: $\bar{x}(nT)$
- Method:
 - **1. Wavelet filtering:** $(y_g)[n] = (y * g)[n]$
 - 2. LASSO (compute n_k s and α_k s): arg min $\|\mathbf{y}_g - \mathbf{Ah}\|_2^2 + \gamma \|\mathbf{h}\|_1$

Discrete version:

 $\overline{y(nT)} = \mathcal{M}_{\lambda}\{x(nT)\} = x(nT) - z(nT),$ where $z(nT) = \sum_{k} \alpha_{k} \mathbf{1}_{[n_{k}, n_{k+1}]}(nT).$

2. Problem Formulation

- 1. Given $y(t) = \mathcal{M}_{\lambda}\{x(t)\}$, reconstruct x(t).
- 2. Given $y(nT) = \mathcal{M}_{\lambda}\{x(nT)\}$, reconstruct x(nT).

3. Continuous-Domain Analysis

Definition 1 (Vanishing moments)

A wavelet ψ has p + 1 vanishing moments if $\int t^k \psi(t) dt = 0$, for $k \in [0, p]$. $h - sparse vector with h[n_k] = \beta_k$ and $supp{h}=cardinality of {n_k}$

Selection of sampling interval (T):

- Let $T_f := \min_k (n_k n_{k-1})$ be the minimum sampling interval.
- For no overlap: $T_f > \operatorname{supp}\{m[n]\}$.
- Support of Daubechies wavelet filter of order p is 2p.
- A sufficient condition on T: $T < \frac{T_f}{2p}$.

References

[1] A. Bhandari, F. Krahmer, and R. Raskar, "On unlimited sampling," in *Proceedings of International Conference on Sampling Theory and*

- 3. Compute $\overline{z}[n] : \sum_k \alpha_k \mathbf{1}_{\llbracket n_k, n_{k+1} \rrbracket}$
- 4. Reconstruct $x[n] : \overline{x}[n] = y[n] + \overline{z}[n]$

7. Simulation Results

• Sum of sinusoids of frequency 4 Hz and 7 Hz with T=2 ms.

Key idea: Use wavelets to annihilate the smooth parts of y(t).

Lemma 1 Let x(t) be a polynomial of degree p, $\psi(t)$ be a wavelet with p + 1 vanishing moments, and $y(t) = \mathcal{M}_{\lambda}\{x(t)\}$. Then, $y_{\psi}(t) := (y * \psi)(t) = \sum_{k} (\alpha_{k} - \alpha_{k-1})\xi(t-t_{k})$, where $\xi(t) = -\int_{-\infty}^{t} \psi(\tau) d\tau$.

- Estimation of α_k s: by matched filtering.
- Sufficient condition for exact reconstruction: $(t_k - t_{k-1}) > (2p-1) \implies \frac{2\lambda}{L} < (2p-1).$

Applications (SampTA), July 2017, pp. 31–35.

- [2] K. Sasagawa, T. Yamaguchi, M. Haruta, Y. Sunaga, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, "An implantable CMOS image sensor with self-reset pixels for functional brain imaging," *IEEE Transactions on Electron Devices*, vol. 63, no. 1, pp. 215–222, Jan 2016.
- [3] I. Daubechies, "Ten Lectures on Wavelets," SIAM, 1992.
- [4] S. Mallat, *A Wavelet Tour of Signal Processing*, Academic Press, 2008.
- [5] R. Tibshirani, "Regression shrinkage and selection via the lasso," *Journal of the Royal Statistical Society*, Series B, vol. 58, pp. 267–288, 1994.

Acknowledgements

- The work has been funded by the Science and Engineering Research Board (SERB), Government of India through the project "Sub-Nyquist Sampling."
- Conference travel funded by Indian Institute of Science, Bangalore and SPCOM 2018 travel grant.

TIME (s)

WAVE-BUS with $\lambda = 0.15$: (a) Signal x(nT), its modulo samples y(nT), and the reconstruction $\bar{x}(nT)$; (b) wavelet filter output $y_g(nT)$, and the estimate $\bar{z}(nT)$. The reconstruction error was computed to be -330 dB.

 Signal-to-reconstruction-noise ratio (SRNR) vs input SNR for WAVE-BUS and repeated finite-difference (RFD)¹ method.

