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Why learn from private data?

• Much of private/sensitive data is being digitized

• Want to learn about population – using/reusing data

• Free and open sharing – ethical, legal, and technological obstacles
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Why use tensors?

• Can infer dependencies beyond second-moment methods (e.g.
PCA)

• Some parameter estimation problems can be posed as tensor
decomposition problems

• More suited for learning latent variable models[AGHKT14]

1Figure from [KB09]
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Single topic model (STM)

• Hidden variable k – specifying the sole topic of a document
• k can take K distinct values with probability P [h = k] = wk
• Observe N documents, each with L ≥ 3 words
• Given k, words are drawn independently ∼ ak ∈ RD
• D is the alphabet size
• Words tl,n ∈ RD represented using one-hot encoding
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Single topic model

The way we record what we observe is: we form an D ×D ×D tensor
whose (d1, d2, d3)-th entry is the proportion of times we see a
document with first word d1, second word d2 and third word d3.

M2 =
1

N

N∑
n=1

t1,n ⊗ t2,n, M3 =
1

N

N∑
n=1

t1,n ⊗ t2,n ⊗ t3,n
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Single topic model

Define two population moments in terms of ak and {wk}

M2 =

K∑
k=1

wkak ⊗ ak, M3 =

K∑
k=1

wkak ⊗ ak ⊗ ak.

These can be estimated from the samples.

Goal: recover {wk} and {ak}
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{x1, . . .xn�1}

Algorithm F

adversary

= xn  ?or x0
n

H1H0 or

Differential Privacy
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Differential privacy: a definition

 Algorithm
D

{x1, . . . ,xn�1,xn} F

D0
{x1, . . . ,xn�1,x

0
n} Algorithm F0

D0
{x1, . . . ,xn�1,x

0
n} F0

[Dwork et al. 2006] An algorithm A is (ε, δ)-differentially private if for
any set of outputs F , and all (D,D′) differing in a single point,

P (A(D) ∈ F) ≤ exp(ε) · P
(
A(D′) ∈ F

)
+ δ
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Differential privacy: hypothesis testing

{x1, . . .xn�1}

Algorithm F

adversary

= xn  ?or x0
n

H1H0 or

log
P (A(D) ∈ F)
P (A(D′) ∈ F) ≤ ε

We want to design algorithms that satisfy differential privacy
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Tensor Basics

1Figure from [KB09]
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Modes and fibers

Definition

An M -th order tensor is an element of the tensor product of M vector
spaces.

Definition

Fiber is higher order analog of row/column and is defined by fixing
every index but one.

1Figure from [KB09]
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Outer product and rank

• Consider a vector: xm ∈ RDm . Then the M -way outer product is:

[x1 ⊗ x2 ⊗ · · · ⊗ xM ]d1,d2,...,dM = [x1]d1 [x2]d2 · · · [xM ]dM

• An M -way tensor X ∈ RD1×D2×...×DM is rank-1 if:

X = x1 ⊗ x2 ⊗ . . .⊗ xM
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Projecting tensors on matrices

• Consider the M -mode tensor: X ∈ RD1×D2×...×DM

• And a set of matrices {Vm ∈ RDm×Km : m = 1, 2, . . . ,M}
• We can project each mode of X on corresponding Vm as to get
X (V1,V2, . . . ,VM ) ∈ RK1×K2×...×KM :

[X (V1 . . .VM )]k1...kM =
∑

d1...dM

[X ]d1...dM [V]d1,k1 · · · [V]dM ,kM
.

This is the multilinear mapping [AGHKT14].
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Orthogonal Decomposition of Tensors
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Symmetric tensors

Definition

A tensor is symmetric if the entries do not change under any
permutation of the indices.

Orthogonal Decomposition of Symmetric Tensors

• X → M -way D dimensional symmetric tensor

• There exists a decomposition [CGLM08]:

X =

K∑
k=1

λkvk ⊗ vk ⊗ · · · ⊗ vk

• WLOG, assume that vk ∈ RD have L2 norm at-most 1

• X is ODECO if we can find V with orthogonal columns [K15]:
V = [v1 v2 . . .vK ] ∈ RD×K
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Eigenvectors of ODECO tensors

Definition

A unit vector u ∈ RD is an eigenvector of X with corresponding
eigenvalue λ if

X (I,u,u) = λu

• X is ODECO =⇒ vk’s are orthogonal to each other

• So, X (I,vk,vk) = λkvk for all k = 1, 2, . . . ,K
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Tensor power method

X is ODECO =⇒ we can find its eigenvectors and eigenvalues using:

u 7→ X (I,u,u)
‖X (I,u,u)‖2

• Not all tensors are ODECO – even if they are symmetric

• We need to perform whitening – project the tensor on a subspace
such that the eigenvectors become orthogonal to each other
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Recall the STM problem

M2 =

K∑
k=1

wkak ⊗ ak ≈
1

N

N∑
n=1

t1,n ⊗ t2,nM3 =

K∑
k=1

wkak ⊗ ak ⊗ ak ≈
1

N

N∑
n=1

t1,n ⊗ t2,n ⊗ t3,n

• Have sample estimates of M2 and M3

• Want to recover {wk} and {ak}
• Problem: M3 not ODECO in general

• Idea: use M2 to find a good projection subspace
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Finding a subspace

• Goal: find W ∈ RD×K to ensure M3 (W,W,W) is ODECO
=⇒ W>ak’s are orthogonal to each other

• How? Perform SVD on M2: M2 = UDU>

• U ∈ RD×K and D ∈ RK×K

• W = UD−
1
2 ∈ RD×K

• Compute:

M̃3 =M3(W,W,W) =

K∑
k=1

wk

(
W>ak

)
⊗
(
W>ak

)
⊗
(
W>ak

)
.

M̃3 ∈ RK×K×K is ODECO =⇒ so we can recover
{wk} and {ak}
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Proposed Algorithm
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Differentially-private OTD (AGN / AVN)

Input: M2 ∈ RD×D, M3 ∈ RD×D×D; parameters ε1, ε2, δ1, δ2

• Generate D ×D symmetric E with {Eij : i ∈ [D], j ≤ i} drawn

i.i.d. from N (0, τ21 ) and τ1 =


√
2

Nε1

√
2 log

(
1.25
δ1

)
, for AGN

√
2

Nε1

√
2 log

(
1.25
δ1+δ2

)
, for AVN

• Compute W = UD−
1
2 , where UDU> = M2 +E

• Draw a vector b ∈ RDsym and generate symmetric E ∈ RD×D×D

from b: b ∼

N (0, τ22 I), τ2 =
√
2

Nε2

√
2 log

(
1.25
δ2

)
for AGN

fb(b) =
1
α exp (−β‖b‖2) , β = Nε2√

2
for AVN

• Compute M̃3 ← (M3 + E) (W,W,W)

Output: Private ODECO tensor M̃3, projection subspace W

Rutgers Imtiaz & Sarwate



ICASSP 2018 > Proposed Algorithm 23 / 31

A closer look at AGN / AVN

• Two quantities involve data – W and M3

• W needs to satisfy privacy – required for projection and
computing {ak}

• Modifying the projection (M3 + E) (W,W,W) to satisfy privacy
is hard – large sensitivity

• AGN and AVN differs in the distribution b is sampled from

• However, the implications are further reaching – “pure” ε-DP
mechanisms
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Privacy guarantee of AGN and AVN Algorithms

Theorem (Privacy of AGN and AVN Algorithms)

Both AGN and AVN algorithms compute the orthogonally
decomposable tensor M̃3 with (ε1 + ε2, δ1 + δ2).

• L2 sensitivities of both M2 and M3 are
√
2
N

• By AG [Dwork et al. 2014] algorithm: computation of M2 +E is
differentially private

• For AGN: Gaussian mechanism [Dwork et al. 2013] ensures the
computation of M3 + E is DP

• For AVN: using the density fb(b) in the definition of DP shows
the computation of M3 + E is DP

• Differential-privacy is invariant to post-processing: computation of
(M3 + E) (W,W,W) satisfies (ε, δ) differential privacy
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Experimental Results
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Dataset and performance measure

Datasets

• Synthetic dataset1: (D = 10, K = 5)

• Synthetic dataset2: (D = 50, K = 10)

Performance measure

• True components: {ak}; recovered components: {âk}
• Error metric: ecomp = 1

K

∑K
k=1 γ

k
min

• γkmin = mink′∈[K] ‖âk − ak′‖2
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Performance variation

vs ε
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Performance variation

vs N
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Concluding Remarks
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Concluding remarks

• There are two stages where we add noise to ensure
differential-privacy – optimal allocation of ε and δ is an open
question

• The proposed methods outperform the DP-TPM [WA2016] and
match the performance of the non-private method for large
enough ε or N

• The AVN algorithm performs slightly worse than the AGN, but
still much better than the DP-TPM

• The performance gap between AVN and DP-TPM is smaller for
D = 50 than for D = 10
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Questions

Thank you

Rutgers Imtiaz & Sarwate


	Motivation
	Differential Privacy
	Tensor Basics
	Orthogonal Decomposition of Tensors
	Proposed Algorithm
	Experimental Results
	Conclusion

