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Why learn from private data?
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e Much of private/sensitive data is being digitized
e Want to learn about population — using/reusing data
e Free and open sharing — ethical, legal, and technological obstacles
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Why use tensors?

e Can infer dependencies beyond second-moment methods (e.g.
PCA)

e Some parameter estimation problems can be posed as tensor
decomposition problems

e More suited for learning latent variable models|AGHKT14]

!Figure from [KB09]
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Single topic model (STM)
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Hidden variable k£ — specifying the sole topic of a document
k can take K distinct values with probability P [h = k] = wy
Observe N documents, each with L > 3 words

Given k, words are drawn independently ~ a;, € R”

D is the alphabet size

Words t;,, € RP represented using one-hot encoding

A
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Single topic model
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The way we record what we observe is: we form an D x D x D tensor
whose (dy,da, d3)-th entry is the proportion of times we see a
document with first word d;, second word ds and third word ds.
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Single topic model

Define two population moments in terms of a; and {wy}

K K

M, = Zwkak ® ag, Mz = Zwkak ® ar @ ag.
k=1 k=1

These can be estimated from the samples.

Goal: recover {w;} and {a;}
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Differential privacy: a definition

D

{x1,...,Xp_1, %X, } = Algorithm —> F

D/

{x1,...,Xp_1, %, } =—>| Algorithm —> F’

N

[Dwork et al. 2006] An algorithm A is (e, §)-differentially private if for
any set of outputs F, and all (D, D’) differing in a single point,

P(A(D) € F) <exp(e) - P(A(D') € F) +6

| e
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Differential privacy: hypothesis testing

& ——| Algorithm

adversary

P(A(D) € F)
CRAD)eR) <

We want to design algorithms that satisfy differential privacy
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Tensor Basics

!Figure from [KB09]
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Modes and fibers

An M-th order tensor is an element of the tensor product of M vector
spaces.

Fiber is higher order analog of row/column and is defined by fixing
every index but one.

!Figure from [KB09]
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Outer product and rank

Z

=N

o Consider a vector: x,,, € RP». Then the M-way outer product is:
(X1 @ %2 ® - @XMy, g, apy = Xtldi[X2]as - - [Xns]dn,
e An M-way tensor X € RP1xD2x- XD g rank-1 if:

X=x10x2Q...0Xy
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Projecting tensors on matrices

e Consider the M-mode tensor: X € RP1xD2x...xDum
o And a set of matrices {V,,, € RP»*Km .yp = 1,2, ... M}

e We can project each mode of X on corresponding V,,, as to get
X (V17V2, .. ,VM) € RE1xKax.. XK.

X (Vi Vadls oy = Z [y anr Vaw Vg s

This is the multilinear mapping [AGHKT14].
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Orthogonal Decomposition of Tensors
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Symmetric tensors

Definition

A tensor is symmetric if the entries do not change under any
permutation of the indices.

Orthogonal Decomposition of Symmetric Tensors
e X — M-way D dimensional symmetric tensor
o There exists a decomposition [CGLMO8]:

K
X=3 Mviovi®- @V
k=1

e WLOG, assume that vi € R have £5 norm at-most 1

e X is ODECO if we can find V with orthogonal columns [K15]:

V=[vi vy ...vg]€RPXK

/i
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Eigenvectors of ODECO tensors

A unit vector u € R” is an eigenvector of X' with corresponding
eigenvalue )\ if

X(I,u,u) = A\u

e X is ODECO = w;'s are orthogonal to each other
e So, X(I,vi,vi) = Agvg forall k=1,2,... K
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Tensor power method

X is ODECO = we can find its eigenvectors and eigenvalues using:

- X (I, u,u)
”X(Iv u, u)||2
e Not all tensors are ODECO - even if they are symmetric

e We need to perform whitening — project the tensor on a subspace
such that the eigenvectors become orthogonal to each other

' Rutgers Imtiaz & Sarwate
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Recall the STM problem

K N K
1 1
M, :;wkak(@ak ~ N;tl,n@)thg — ;wkak@)ak@ak ~

Have sample estimates of My and M3

Want to recover {wy} and {ay}
Problem: M3 not ODECO in general

Idea: use Mo to find a good projection subspace
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Finding a subspace

e Goal: find W € RP*K to ensure M3 (W, W, W) is ODECO
= W 'ay's are orthogonal to each other

e How? Perform SVD on My: My = UDUT
e Uc RPXK apd D € REXK
e W=TUD"z e RDXK

e Compute:
Wy = My(W, W, W) =3 (W) & (Wa) & (W),
k=1

M € REXEXEK js ODECO = so we can recover
{wy} and {a;}
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e Generate D x D symmetric E
M2 |:> o Compute My = M, + E

e Decompose M, = UDUT

ﬁ o Compute W = UD~ 2
A A A A @
LN X ]
n=1 n=2 n=3 n=N e Compute M3 = M3(W, W, W)
@ Output: Private ODECO tensor Ms,
projection subspace W

M 3 : e Cenerate symmetric £ € RP*PxDP

e Compute Ms=Ms+€E

Proposed Algorithm
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Differentially-private OTD (AGN / AVN)

Input: My € RPXP | M3 € RPXPXD: parameters €1, €2, 01, 92

e Generate D x D symmetric E with {E;; : i € [D],j <4} drawn

M2 [210g (125) for AGN

ii.d. from A(0,7%) and 7 =

M2 [210g (%) for AVN

e Compute W = UD_%, where UDU'" = M, + E

e Draw a vector b € RPsm and generate symmetric £ ¢ RP*P*P
N(0,721), 7o = \f 2log (125) for AGN
() = Lexp(~lbl) . 5 55 for AVN

V2
o Compute M3 + (M3 + &) (W, W, W)
Output: Private ODECO tensor Ms, projection subspace W

fromb: b~

| e
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A closer look at AGN / AVN

e Two quantities involve data — W and M3

e W needs to satisfy privacy — required for projection and
computing {ay}

e Modifying the projection (M3 + &) (W, W, W) to satisfy privacy
is hard — large sensitivity

e AGN and AVN differs in the distribution b is sampled from

e However, the implications are further reaching — “pure” ¢-DP
mechanisms

A
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Privacy guarantee of AGN and AVN Algorithms

Theorem (Privacy of AGN and AVN Algorithms)

Both AGN and AVN algorithms compute the orthogonally
decomposable tensor M3 with (€1 + €2,91 + 62).

e [o sensitivities of both My and M3 are \/Wi

e By AG [Dwork et al. 2014] algorithm: computation of My + E is
differentially private

e For AGN: Gaussian mechanism [Dwork et al. 2013] ensures the
computation of M3 + & is DP

e For AVN: using the density f3(b) in the definition of DP shows
the computation of M3 + £ is DP

e Differential-privacy is invariant to post-processing: computation of
(M3 + &) (W, W, W) satisfies (¢,0) differential privacy
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Experimental Results

' Rutgers Imtiaz & Sarwate



ICASSP 2018 > Experimental Results

Dataset and performance measure

Datasets
e Synthetic datasetl: (D = 10, K = 5)
e Synthetic dataset2: (D = 50, K = 10)
Performance measure
e True components: {ay}; recovered components: {a}
e Error metric: ecomp = % Zle ’leinn

o Y = ming e [|ar — ap |2
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Performance variation

VS €
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Performance variation

vs N
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Concluding Remarks
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Concluding remarks

e There are two stages where we add noise to ensure
differential-privacy — optimal allocation of € and § is an open
question

e The proposed methods outperform the DP-TPM [WA2016] and
match the performance of the non-private method for large
enough e or N

e The AVN algorithm performs slightly worse than the AGN, but
still much better than the DP-TPM

e The performance gap between AVN and DP-TPM is smaller for
D = 50 than for D =10
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Questions

Thank you
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