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Why learn from private data?

• Much of private/sensitive data is being digitized

• Want to learn about population – using/reusing data

• Free and open sharing – ethical, legal, and technological obstacles

Rutgers Imtiaz & Sarwate
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Why learn in distributed setting?

Good feature learning requires large sample sizes.

• Data at a single site may not be sufficient for statistical learning

• Pooling data in one location may not be possible
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An example in neuroimaging

• Multiple fMRI collection centers

• Each has a moderate number of samples, at best

• Goal: find a way to reduce the sample dimension

We can perform principal component analysis (PCA)
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Principal Component Analysis
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The PCA problem: pooled case

• Data matrix: X = [x1 x2 . . . xN ] ∈ RD×N

• Second-moment matrix: A = 1
N XX>

• We can decompose A as: A = VΛV>

• Here, Λ = diag(λ1, λ2, . . . , λD) and λ1 ≥ λ2 ≥ · · · ≥ λD ≥ 0
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The PCA problem: pooled case

• The best rank-K approximation of A: AK = VKΛKV>K
• The top-K PCA subspace is the span of the corresponding

columns of V: VK(A)
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The PCA problem: distributed case

• One aggregator, S different sites with disjoint datasets
• Local data matrix: Xs = [xs,1 . . .xs,Ns ] ∈ RD×Ns

• Local second-moment matrix: As = 1
Ns

XsX
>
s

• All parties: “nice but curious”

How can we compute a global VK?
Rutgers Imtiaz & Sarwate
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What are our options?

• Send Xs to aggregator

→ huge communication cost
→ privacy violation

• Compute VK using local data

→ poor quality of the subspace
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{x1, . . .xn�1}

Algorithm F

adversary

= xn  ?or x0
n

H1H0 or

Differential Privacy
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Differential privacy: a definition

 Algorithm
D

{x1, . . . ,xn�1,xn} F

D0
{x1, . . . ,xn�1,x

0
n} Algorithm F0

D0
{x1, . . . ,xn�1,x

0
n} F0

[Dwork et al. 2006] An algorithm A is (ε, δ)-differentially private if for
any set of outputs F , and all (D,D′) differing in a single point,

P (A(D) ∈ F) ≤ exp(ε) · P
(
A(D′) ∈ F

)
+ δ
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Differential privacy: hypothesis testing

{x1, . . .xn�1}

Algorithm F

adversary

= xn  ?or x0
n

H1H0 or

log
P (A(D) ∈ F)

P (A(D′) ∈ F)
≤ ε

We want to design algorithms that satisfy differential privacy
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Why we need privacy in PCA?
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Changing one sample can significantly change the principal direction
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What are we trying to address?

Goal: compute an accurate VK

• want to exploit all samples across all sites

• want a lower communication cost

• want to preserve a formal privacy definition

Idea: send the differentially private partial square root of As
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Proposed Algorithm
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Differentially-private Distributed PCA (DPdisPCA)

Input: Data matrix Xs for s ∈ [S]; privacy parameters ε, δ;
intermediate dimension R; reduced dimension K

→ for s = 1, 2, . . . , S do :
• Compute As ← 1

Ns
XsX

>
s

• Generate D ×D symmetric matrix E where {Eij : i ∈ [D], j ≤ i}
drawn i.i.d. ∼ N (0,∆2

ε,δ) and ∆ε,δ = 1
Nsε

√
2 log(1.25

δ )

• Compute Âs ← As + E
• Perform SVD Âs = UΣU>

• Compute Ps ← URΣ
1
2

R; send Ps to aggregator

→ Compute Ac ← 1
S

∑S
s=1 PsP

>
s

→ Perform SVD Ac = VΛV>

Output: Differentially-private rank-K subspace VK
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Privacy guarantee of DPdisPCA

Theorem (Privacy of DPdisPCA Algorithm)

DPdisPCA computes an (ε, δ) differentially private approximation to
the optimal subspace VK(A).

• L2 sensitivity of As is 1
Ns

• By AG [Dwork et al. 2014] algorithm: computation of Âs is (ε, δ)
differentially private

• Differential-privacy is invariant to post-processing: computation of
VK also satisfies (ε, δ) differential privacy

Rutgers Imtiaz & Sarwate
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Some comments on DPdisPCA

• Ps is D ×R: communication cost is proportional to S ×D ×R
• If we send Âs, the cost would be proportional to S ×D2.

Typically, K < R < D

• Sending Ps instead of Âs does introduce some errors – cost of
cheaper communication

Rutgers Imtiaz & Sarwate
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Experimental Results
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Datasets

• Synthetic dataset (D = 200, K = 50) generated with zero mean
and a pre-determined covariance matrix

• MNIST dataset (D = 784, K = 50) (MNIST)

• Covertype dataset (D = 54, K = 10) (COVTYPE)
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The trade-offs

We are interested to find out:

• how performance varies with “privacy risk” ε

• how performance varies with sample size Ns

Rutgers Imtiaz & Sarwate
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Performance measures

Table: Notation of performance measures

Algorithm / Setting Performance Index

Pooled Data qpooled
DPdisPCA qDPdisPCA

Local Data qlocal
Sending Âs qfull

• Quality of a subspace V: captured energy of A

q(V) = tr(V>AV)

• We plot the ratio of these quantities with respect to the true
captured energy qo
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Performance variation

For synthetic data
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Performance variation

with ε
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Performance variation

with Ns
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Concluding Remarks
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Concluding remarks

• The distributed algorithm clearly outperforms the local PCA
algorithm

• Increasing ε improves performance at the cost of lower privacy

• Datasets with lower D allows smaller ε for achieving the same
utility

• Increasing Ns improves performance for a fixed privacy level

• The cost of sending Ps instead of Âs is noticeable in all datasets
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Questions

Thank you
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