Permissible Support Patterns for Identifying the Spreading Function of Time-Varying Channels

*Katholische Universität Eichstätt-Ingolstadt, Germany ${ }^{\dagger}$ Technische Universität München, Germany

Time-Varying Channels \& Operators
\triangleright A time-varying communication channel is modeled by the input-output relation $y(t)=(\mathrm{H} x)(t)=\int_{\mathbb{R}} h_{\mathrm{H}}(\tau, t) x(t-\tau) \mathrm{d} \tau, \quad t \in \mathbb{R}$
with the time-varying impulse response h_{H}
Similarly, taking the Fourier transform of $h_{\mathrm{H}}(\tau, \cdot)$, one obtains

$$
\begin{align*}
y(t)=(\mathrm{H} x)(t) & =\iint_{\mathbb{R} \times \mathbb{R}} \eta_{\mathrm{H}}(\tau, \nu) \mathrm{e}^{\mathrm{i} 2 \pi \nu(t-\tau)} x(t-\tau) \mathrm{d} \nu \mathrm{~d} \tau \\
& =\iint_{\mathbb{R} \times \mathbb{R}} \eta_{\mathrm{H}}(\tau, \nu)\left(\mathrm{M}_{\nu} \mathrm{T}_{\tau} x\right) x(t) \mathrm{d} \nu \mathrm{~d} \tau
\end{align*}
$$

with the spreading functions $\eta_{\mathrm{H}}(\tau, \nu)=\left(\mathcal{F} h_{\mathrm{H}}(\tau, \cdot)\right)(\nu)$, with the translation operator T_{τ}, and with the modulation operator M_{ν}, given by
$\left(\mathrm{T}_{\tau} x\right)(t)=x(t-\tau) \quad$ and $\quad\left(\mathrm{M}_{\nu} x\right)(t)=x(t) \mathrm{e}^{\mathrm{i} 2 \pi \nu t}$
Every bounded linear operator $\mathrm{H}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ can be represented in the form (1).

Identification of Stochastic Operators
Stochastic channels: The spreading function $\eta(\tau, \nu)$ may be considered as a two-dimensional stochastic process with covariance function

$$
\begin{equation*}
R_{\mathrm{H}}\left(\tau, \tau^{\prime}, t, t^{\prime}\right)=\mathbb{E}\left[\eta(\tau, t) \overline{\eta\left(\tau^{\prime}, t^{\prime}\right)}\right] \tag{2}
\end{equation*}
$$

Problem: Assuming a sounding signal of the form

$$
x_{\mathrm{s}}(t)=\sum_{n \in \mathbb{Z}} c_{n} \delta(t-n T)
$$

with an N-periodic sequence $\left\{c_{n}\right\}_{n \in \mathbb{Z}}$. Determine the covariance function (2) of the operator H from the covariance

$$
R_{y}\left(t, t^{\prime}\right)=\mathbb{E}\left[y(t) \overline{y\left(t^{\prime}\right)}\right]=\mathbb{E}\left[\left(\mathrm{H} x_{\mathrm{s}}\right)(t) \overline{\left(\mathrm{H} x_{\mathrm{s}}\right)\left(t^{\prime}\right)}\right]
$$

of the channel output $y(t)=\left(\mathrm{H} x_{\mathrm{s}}\right)(t)$.

Reformulation in Finite Dimensions

Stochastic operator estimation

Determine the covariance $\mathbf{X}=\mathbb{E}\left[\boldsymbol{\eta} \boldsymbol{\eta}^{*}\right] \in \mathbb{C}^{N^{2} \times N^{2}}$ of a random spreading vector $\boldsymbol{\eta} \in \mathbb{C}^{N^{2}}$ from the covariance $\mathbf{Y}=\mathbb{E}\left[\boldsymbol{y} \boldsymbol{y}^{*}\right] \in \mathbb{C}^{N \times N}$ of the channel output

$$
\boldsymbol{y}=H \boldsymbol{c}=\sum_{k=0}^{N-1} \sum_{\ell=0}^{N-1} \eta(k, \ell)\left(\mathrm{M}^{\ell} \mathrm{T}^{k} \boldsymbol{c}\right)=\mathbf{G}_{c} \boldsymbol{\eta},
$$

where $\mathbf{G}_{\boldsymbol{c}}=\left[\mathrm{M}^{\ell} \mathrm{T}^{k} \boldsymbol{c}\right]_{k, \ell=0}^{N-1} \in \mathbb{C}^{N \times N^{2}}$ is the Gabor matrix generated by $\boldsymbol{c} \in \mathbb{C}^{N}$ \triangleright Columns of measurement matrix $\mathbf{G}_{\boldsymbol{c}} \in \mathbb{C}^{N \times N^{2}}$ are time-frequency shifts of \boldsymbol{c}. \triangleright To recover \mathbf{X} from \mathbf{Y}, one needs to solve the undetermined linear system $\overrightarrow{\boldsymbol{y}}=\left(\overline{\mathbf{G}_{\boldsymbol{c}}} \otimes \mathbf{G}_{\boldsymbol{c}}\right) \overrightarrow{\boldsymbol{x}} \quad$ with $\quad \overrightarrow{\boldsymbol{y}}=\operatorname{vec}(\mathbf{Y}) \in \mathbb{C}^{N^{2}}$ and $\overrightarrow{\boldsymbol{x}}=\operatorname{vec}(\mathbf{X}) \in \mathbb{C}^{N^{4}}$. $\triangleright \overrightarrow{\boldsymbol{x}}$ needs to be sparse to get a unique solution.
Problem: Assume the support pattern $\bar{\Gamma}$ of $\overrightarrow{\boldsymbol{x}}$ (i.e. of \mathbf{X}) is known. Find an identifier $\boldsymbol{c} \in \mathbb{C}^{N}$ such that the matrix $\left.\overline{\mathbf{G}_{\boldsymbol{c}}} \otimes \mathbf{G}_{\boldsymbol{c}}\right|_{\Gamma}$ is invertible.

Permissible \& Defective Support Pattern

We consider (covariance) matrices \mathbf{X} of size $N^{2} \times N^{2}$. The support pattern of \mathbf{X} is a set $\Lambda \subset\left(\mathbb{Z}_{N} \times \mathbb{Z}_{N}\right) \times\left(\mathbb{Z}_{N} \times \mathbb{Z}_{N}\right)$ such that $\Lambda=\left\{\left(\lambda, \lambda^{\prime}\right) \in \Lambda: \mathbf{X}\left(\lambda, \lambda^{\prime}\right) \neq 0\right\} \quad$ where $\quad \lambda=(k, l)$ with $k, l \in \mathbb{Z}_{N}$ We say that Λ is a positive semi-definite (psd) pattern if $\left(\lambda, \lambda^{\prime}\right) \in \Gamma \Rightarrow(\lambda, \lambda),\left(\lambda^{\prime}, \lambda\right),\left(\lambda^{\prime}, \lambda^{\prime}\right) \in \Gamma$.

Given a support pattern Γ. Is it possible to find a $\boldsymbol{c} \in \mathbb{C}^{N}$ such that $\left.\overline{\mathbf{G}_{c}} \otimes \mathbf{G}_{c}\right|_{\Gamma}$ is injective?
\triangleright Yes! $\Rightarrow \Gamma$ is permissible
$\triangleright \mathrm{No}!\Rightarrow \Gamma$ is defective.
If Γ is permissible: How to choose $\boldsymbol{c} \in \mathbb{C}^{N}$?

Examples of Defective Patterns

\square

$$
\begin{aligned}
& \Leftarrow \text { Arrowhead pattern } \\
& \Gamma_{\mathrm{L}}=(\{\lambda\} \times \Lambda) \cup(\Lambda \times\{\lambda\}) \cup \operatorname{diag}(\Lambda) \\
& \text { with } \lambda \in \Lambda \text { and }|\Lambda| \geq N+1 .
\end{aligned}
$$

I. Permissible Pattern of the First Kind

Theorem: Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ with $m \leq n$, and let $\Lambda \subseteq\{0,1, \ldots, n-1\}$ with $|\Lambda| \geq 2$. Then the following statements are equivalent
(a) $\left.\mathbf{A}\right|_{\Lambda} \in \mathbb{C}^{m \times|\Lambda|}$ is injective.
(b) $\left.\overline{\mathbf{A}} \otimes \mathbf{A}\right|_{\Lambda \times \Lambda} \in \mathbb{C}^{m^{2} \times|\Lambda|^{2}}$ is injective. (c) There exist nonempty disjoint subsets $\Lambda_{1}, \Lambda_{2} \subset \Lambda$ with $\Lambda_{1} \cup \Lambda_{2}=\Lambda$ such that $\left.\overline{\mathbf{A}} \otimes \mathbf{A}\right|_{\left(\Lambda_{1} \times \Lambda_{1}\right) \cup\left(\Lambda_{2} \times \Lambda_{2}\right)}$ is injective.
(d) There exist nonempty disjoint subsets $\Lambda_{1}, \Lambda_{2} \subset \Lambda$ with $\Lambda_{1} \cup \Lambda_{2}=\Lambda$ such that $\left.\overline{\mathbf{A}} \otimes \mathbf{A}\right|_{\left(\Lambda_{1} \times \Lambda_{2}\right) \cup\left(\Lambda_{2} \times \Lambda_{1}\right) \cup \operatorname{diag}(\Lambda)}$ is injective.
(e) There exists $\lambda \in \Lambda$ for which $\left.\overline{\mathbf{A}} \otimes \mathbf{A}\right|_{(\{\lambda\} \times \Lambda) \cup(\Lambda \times\{\lambda\}) \cup \operatorname{diag}(\Lambda)}$ is injective. and $|\Lambda| \leq \operatorname{rank} \mathbf{A}(\leq m)$ and $\left.\overline{\mathbf{A}} \otimes \mathbf{A}\right|_{\Gamma}$ is injective for every subpattern $\Gamma \subset \Lambda \times \Lambda$.
\triangleright Choose $\boldsymbol{c} \in \mathbb{C}^{N}$ randomly then $\mathbf{G}_{\boldsymbol{c}} \in \mathbb{C}^{N \times N^{2}}$ is injective (with probability 1) \Rightarrow (b)-(e) yields permissible patterns if $|\Lambda| \leq N$.

II. Generalized Diagonal Pattern

As a generalization of the diagonal pattern $\Lambda_{\text {diag }}=\left\{(k, \ell, k, \ell): k, \ell \in \mathbb{Z}_{N}\right\}$, we consider patterns of the form

$$
\Gamma=\cup_{k=0}^{L-1}\left\{\left(k, \ell, k, n_{k, \ell}\right): \ell \in \mathbb{Z}_{N}\right\} \quad \Gamma=\cup_{k=0}^{L-1}\left\{\left(k, \ell_{k, n}, k, n\right): n \in \mathbb{Z}_{N}\right\}
$$

where $n_{k, \ell} \in \mathbb{Z}_{N}$ and $\ell_{k, n} \in \mathbb{Z}_{N}$ are arbitrary sequences in k, ℓ and k, n.
Theorem: Let $N \geq 2$ be any integer and let Γ be any pattern of the above form. The matrix $\left.\overline{\mathbf{G}_{\boldsymbol{c}}} \otimes \mathbf{G}_{\boldsymbol{c}}\right|_{\Gamma}=\left[\overline{\pi(\lambda) \boldsymbol{c}} \otimes \pi\left(\lambda^{\prime}\right) \boldsymbol{c}\right]_{\left(\lambda, \lambda^{\prime}\right) \in \Gamma} \in \mathbb{C}^{N^{2} \times N^{2}}$ is invertible for all \boldsymbol{c} in a dense open subset of \mathbb{C}^{N} with full measure.
\triangleright A generalized pattern is a psd-pattern only when it is a diagonal pattern. \triangleright Choosing $\boldsymbol{c} \in \mathbb{C}^{N}$ randomly $\left.\Rightarrow \overline{\mathbf{G}_{\boldsymbol{c}}} \otimes \mathbf{G}_{\boldsymbol{c}}\right|_{\Gamma}$ is invertible (with prob. 1).

III. Scattered Patterns

\triangleright Divide $\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ into $N+1$ additive subgroups V_{p} of cardinality N
\triangleright Consider the cosets of these subgroups (left figure).
$\triangleright A$ pattern Γ is obtained by choosing one element from each coset (right figure).

$$
\begin{aligned}
\Gamma_{p}=\left\{\left(\lambda_{q, q^{\prime}}, \widetilde{\lambda}_{q, q^{\prime}}\right)\right. & \}_{q, q^{\prime}=0}^{N-1} \subset\left(\mathbb{Z}_{N} \times \mathbb{Z}_{N}\right) \times\left(\mathbb{Z}_{N} \times \mathbb{Z}_{N}\right) \\
& \text { with } \lambda_{q, q^{\prime}} \in V_{p}+(0, q) \text { and } \widetilde{\lambda}_{q, q^{\prime}} \in V_{p}+\left(0, q^{\prime}\right)
\end{aligned}
$$

Theorem: Let $N \geq 2$ be a prime and let $\Gamma \subset\left(\mathbb{Z}_{N} \times \mathbb{Z}_{N}\right) \times\left(\mathbb{Z}_{N} \times \mathbb{Z}_{N}\right)$ be any pattern of the form (4). Then

1. $\left.\overline{\mathbf{G}_{\boldsymbol{c}}} \otimes \mathbf{G}_{\boldsymbol{c}}\right|_{\Gamma}$ is invertible for all \boldsymbol{c} in a dense open subset of \mathbb{C}^{N} of full measure 2. there exist explicit vectors $\boldsymbol{c} \in \mathbb{C}^{N}$ for which $\left.\overline{\mathbf{G}_{\boldsymbol{c}}} \otimes \mathbf{G}_{\boldsymbol{c}}\right|_{\Gamma}$ is unitary.
\triangleright There are psd-pattern of this structure (upper-left 3×3 corner in example). \triangleright Explicit construction of $\boldsymbol{c} \Rightarrow$ unitary $\left.\overline{\mathbf{G}_{\boldsymbol{c}}} \otimes \mathbf{G}_{\boldsymbol{c}}\right|_{\Gamma} \Rightarrow$ stable recovery.
