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Permissible & Defective Support Pattern

Time-Varying Channels & Operators

> A time-varying communication channel is modeled by the input-output relation
Yy(t) = (Ha:) (t) = [ hu(r, t)x(t — 7)d7 | teR

with the time-varying impulse response hy.

We consider (covariance) matrices X of size N* x N*. The support pattern of
Xisaset A C(Zy X Zy) X (Zy X Zy) such that

A={A\XN)eA : X(\LN)#0F where A= (k1) with k,l € Zy .

> Similarly, taking the Fourier transform of hy(7, ), one obtains We say that A is a positive semi-definite (psd) pattern if

y(t) = (Hx)(t) = ﬂ (T, v) 2Tt — 1) dvdr (ML) e = (LA, VN, VJN) el (3)
RxR
— H (T, v) (M, Tr2)z(t) dvdr (1) ! Given a support pattern I'. s it possible to find
RxR : a ¢ € CV such that G. ® G| is injective?

with the spreading functions ny(7,v) = (Fhu(7,-)) (v), with the translation
operator T, and with the modulation operator M,, given by

(T, z)(t) =z(t — 7) and (M, 2)(t) = z(t) e”™" .

> Every bounded linear operator H : L*(R) — L?(R) can be represented in the
form (1).

> Yes! = I"is permissible.
> Nol = I' is defective.
f ' is permissible: How to choose ¢ € C?

AT D)

(Ge®Ge) &

support pattern I

Examples of Defective Patterns

< Arrowhead pattern
'L = ({A} X A) U (/\ X {A}) U diag(A)

Identification of Stochastic Operators

with A € Aand |[A| > N +1.

Stochastic channels: The spreading function 7(7, ) may be considered as a
two-dimensional stochastic process with covariance function

Ru(r,7',t,t') = Eln(r, 1) n(7',t') (2)
Problem: Assuming a sounding signal of the form

Ts(t) = ) _pez Cn 0(t — nT)

Determine the covariance function (2) of

Rank-two defective pattern =
FR = (Al X Al) U (A2 X /\2>

|. Permissible Pattern of the First Kind

.,n — 1} with

with an N-periodic sequence {cy}, ..
the operator H from the covariance

R,(t,t") =E|yt)y(t)| = E|(Hz,) () (Hzs) ()]

of the channel output y(t) = (Hzy) (£).

Theorem: Let A € C™" with m < n, and let A C {0,1,..
|A| > 2. Then the following statements are equivalent

(a) Ay € C™ M s injective. (b) A ® Alrxn € C" XM is injective.

(c) There exist nonempty disjoint subsets Ay, Ay C A with A UAy = A such that
A® A‘(/\1></\1)U(/\2></\2) IS Injective.

(d) There exist nonempty disjoint subsets Ay, Ay C A with A UAs = A such that
AR A“(A1XA2)U(A2XA1)U diag(A) IS Injective.

(e) There exists A € A for which A ® A‘({)\}XA)U(AX{)\})Udiag(A) IS Injective.

and [A| < rank A (< m) and A®A]ris injective for every subpattern I' C AXA.

Reformulation in Finite Dimensions

Stochastic operator estimation
Determine the covariance X = E|nn*| of a random spreading vector
n € CN° from the covariance Y = E[yy*] € CV*V of the channel output

y=He = fCV:_Ol ?;61 n(k,f)(Mngc) =G,

where G = [M‘T*c]? " € CN*N is the Gabor matrix generated by ¢ € CV.
(CNXNQ

c CNQXN2

> Choose ¢ € CN randomly then G, € CV*N is injective (with probability 1)
= (b)—(e) yields permissible patterns if |[A| < N.

(0,0)(0,1) (0,2)(1,0) (1,1)(1,2) (2,0) (2,1)(2,2) (K, {) (0,0)(0,1) (0,2) (1,0) (1,1)(1,2) (2,0) (2, 1) (2,2) (K, £)

=

(m,

=

(m,

> Columns of measurement matrix GG, € are time-frequency shifts of ¢.

> To recover X from Y, one needs to solve the undetermined linear system
Y= (Gc®Ge)E  with y =vec(Y) € CN and & = vec(X) € cMV.

> & needs to be sparse to get a unique solution.

Problem: Assume the support pattern I' of & (i.e. of X) is known. Find an
identifier ¢ € CV such that the matrix G, ® Gg|r is invertible.

DO = (@) \) = @) \) — o
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Il. Generalized Diagonal Pattern

As a generalization of the diagonal pattern Aginy = {(k, 0, k,0) : k, £ € Zn}, we
consider patterns of the form

D=y {(k,lkyngy): L€ Zy}

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) (K, {)

[=Uy {(k, gy, keyn) i m € Zy}

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) (K, {)

where ng ¢ € Zy and ly, € Zy are arbitrary sequences in k, ¢ and k, n.

Theorem: Let N > 2 be any integer and let I be any pattern of the above
form. The matrix G, ® Ge|r = [7(A)e @ m(N)c]\ner € CN >N s invertible
for all ¢ in a dense open subset of CY with full measure.

> A generalized pattern is a psd-pattern only when it is a diagonal pattern.
> Choosing ¢ € C" randomly = G, ® G¢|r is invertible (with prob. 1).

l1l. Scattered Patterns

> Divide Zxy x Zy into N + 1 additive subgroups V,, of cardinality V.
> Consider the cosets of these subgroups (left figure).
> A pattern [ is obtained by choosing one element from each coset (right figure).

N N—1
Fp — {()\q,q’a )‘q,q’)}qjq/:() C (ZN X ZN) X (ZN X ZN)a (4)
with A\, € V,+ (0,q) and A\, € V, + (0,¢')

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
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Theorem: Let N > 2 beaprimeandlet ' C (Zy X Zy) X (Zn X Zy) be any
pattern of the form (4). Then

1. G.® G.|r is invertible for all ¢ in a dense open subset of CV of full measure.

o,

o

2. there exist explicit vectors ¢ € CV for which G, ® G| is unitary.

> There are psd-pattern of this structure (upper-left 3 x 3 corner in example).

> Explicit construction of ¢ = unitary G, ® G.|r = stable recovery.
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