

#### Time-Varying Channels & Operators

- > A time-varying communication channel is modeled by the input-output relation  $y(t) = (\mathbf{H}x)(t) = \int_{\mathbb{R}} h_{\mathbf{H}}(\tau, t) \, x(t - \tau) \, \mathrm{d}\tau \,, \qquad t \in \mathbb{R}$ with the time-varying impulse response  $h_{\rm H}$ .
- $\triangleright$  Similarly, taking the Fourier transform of  $h_{\rm H}(\tau, \cdot)$ , one obtains

$$y(t) = (\mathrm{H}x)(t) = \iint_{\mathbb{R}\times\mathbb{R}} \eta_{\mathrm{H}}(\tau,\nu) e^{\mathrm{i}2\pi\nu(t-\tau)} x(t-\tau) \,\mathrm{d}\nu$$
$$= \iint_{\mathbb{R}\times\mathbb{R}} \eta_{\mathrm{H}}(\tau,\nu) (\mathrm{M}_{\nu}\mathrm{T}_{\tau}x) x(t) \,\mathrm{d}\nu \,\mathrm{d}\tau$$

with the spreading functions  $\eta_{
m H}( au,
u)=\left(\mathcal{F}h_{
m H}( au,\cdot)
ight)(
u)$ , with the translation operator  $T_{\tau}$ , and with the modulation operator  $M_{\nu}$ , given by  $(T_{\tau} x)(t) = x(t - \tau)$  and  $(M_{\nu} x)(t) = x(t) e^{i2\pi\nu t}$ .

 $\triangleright$  Every bounded linear operator  $H: L^2(\mathbb{R}) \to L^2(\mathbb{R})$  can be represented in the form (1).

### Identification of Stochastic Operators

**Stochastic channels:** The spreading function  $\eta(\tau, \nu)$  may be considered as a two-dimensional stochastic process with covariance function

$$R_{\rm H}(\tau,\tau',t,t') = \mathbb{E}\left[\eta(\tau,t)\,\overline{\eta(\tau',t')}\right]$$

**Problem:** Assuming a sounding signal of the form

$$c_{\rm s}(t) = \sum_{n \in \mathbb{Z}} c_n \,\delta(t - nT)$$

with an N-periodic sequence  $\{c_n\}_{n\in\mathbb{Z}^+}$  Determine the covariance function (2) of the operator H from the covariance

$$R_y(t,t') = \mathbb{E}\left[y(t)\overline{y(t')}\right] = \mathbb{E}\left[\left(\mathrm{H}x_{\mathrm{s}}\right)(t)\overline{\left(\mathrm{H}x_{\mathrm{s}}\right)(t')}\right]$$
of the channel output  $y(t) = (\mathrm{H}x_{\mathrm{s}})(t)$ .

## **Reformulation in Finite Dimensions**

#### Stochastic operator estimation

Determine the covariance  $\mathbf{X}=\mathbb{E}[m{\eta}m{\eta}^*]\in\mathbb{C}^{N^2 imes N^2}$  of a random spreading vector  $m{\eta}\in\mathbb{C}^{N^2}$  from the covariance  $\mathbf{Y}=\mathbb{E}[m{y}m{y}^*]\in\mathbb{C}^{N imes N}$  of the channel output  $\boldsymbol{y} = H\boldsymbol{c} = \sum_{k=0}^{N-1} \sum_{\ell=0}^{N-1} \eta(k,\ell) (\mathrm{M}^{\ell} \mathrm{T}^{k} \boldsymbol{c}) = \mathbf{G}_{c} \boldsymbol{\eta} \; ,$ where  $\mathbf{G}_{c} = [M^{\ell}T^{k}c]_{k,\ell=0}^{N-1} \in \mathbb{C}^{N \times N^{2}}$  is the Gabor matrix generated by  $c \in \mathbb{C}^{N}$ .  $\triangleright$  Columns of measurement matrix  $\mathbf{G}_{m{c}} \in \mathbb{C}^{N imes N^2}$  are time-frequency shifts of  $m{c}$ .  $\triangleright$  To recover X from Y, one needs to solve the undetermined linear system  $ec{y} = (\overline{\mathbf{G}_{c}} \otimes \mathbf{G}_{c})ec{x}$  with  $ec{y} = \operatorname{vec}(\mathbf{Y}) \in \mathbb{C}^{N^{2}}$  and  $ec{x} = \operatorname{vec}(\mathbf{X}) \in \mathbb{C}^{N^{4}}$ .  $ightarrow ec{x}$  needs to be sparse to get a unique solution. **Problem:** Assume the support pattern  $\Gamma$  of  $\vec{x}$  (i.e. of  $\mathbf{X}$ ) is known. Find an identifier  $c \in \mathbb{C}^N$  such that the matrix  $\overline{\mathbf{G}_c} \otimes \mathbf{G}_c|_{\Gamma}$  is invertible.

ICASSP 2018 : Modeling and Estimation I – SPTM-P5.9

# **Permissible Support Patterns for Identifying** the Spreading Function of Time-Varying Channels

#### Alihan Kaplan<sup>†</sup> **Dae Gwan Lee**\*

\*Katholische Universität Eichstätt–Ingolstadt, Germany

 $u \,\mathrm{d} au$ 

(1)

(2)

#### Permissible & Defective Support Pattern

We consider (covariance) matrices  ${f X}$  of size  $N^2 imes N^2$ . The support pattern of **X** is a set  $\Lambda \subset (\mathbb{Z}_N \times \mathbb{Z}_N) \times (\mathbb{Z}_N \times \mathbb{Z}_N)$  such that  $\Lambda = \{ (\lambda, \lambda') \in \Lambda : \mathbf{X}(\lambda, \lambda') \neq 0 \} \quad \text{where} \quad \lambda = (k, l) \text{ with } k, l \in \mathbb{Z}_N.$ We say that  $\Lambda$  is a positive semi-definite (psd) pattern if  $(\lambda, \lambda') \in \Gamma \implies (\lambda, \lambda), (\lambda', \lambda), (\lambda', \lambda') \in \Gamma.$ (3)

Given a support pattern  $\Gamma$ . Is it possible to find a  $m{c} \in \mathbb{C}^N$  such that  $\overline{\mathbf{G}_c} \otimes \mathbf{G}_c|_{\Gamma}$  is injective?  $\triangleright$  Yes!  $\Rightarrow \Gamma$  is permissible.  $\triangleright$  No!  $\Rightarrow$   $\Gamma$  is defective. If  $\Gamma$  is permissible: How to choose  $\boldsymbol{c} \in \mathbb{C}^N$ ?

#### **Examples of Defective Patterns**



 $\leftarrow$  Arrowhead pattern  $\Gamma_{\rm L} = (\{\lambda\} \times \Lambda) \cup (\Lambda \times \{\lambda\}) \cup \operatorname{diag}(\Lambda)$ with  $\lambda \in \Lambda$  and  $|\Lambda| \geq N+1$ .

> Rank-two defective pattern  $\Rightarrow$  $\Gamma_{\mathrm{R}} = (\Lambda_1 \times \Lambda_1) \cup (\Lambda_2 \times \Lambda_2)$

## I. Permissible Pattern of the First Kind

**Theorem:** Let  $\mathbf{A} \in \mathbb{C}^{m \times n}$  with  $m \leq n$ , and let  $\Lambda \subseteq \{0, 1, \ldots, n-1\}$  with  $|\Lambda| \geq 2$ . Then the following statements are equivalent

- (c) There exist nonempty disjoint subsets  $\Lambda_1, \Lambda_2 \subset \Lambda$  with  $\Lambda_1 \cup \Lambda_2 = \Lambda$  such that  $\mathbf{A} \otimes \mathbf{A}|_{(\Lambda_1 \times \Lambda_1) \cup (\Lambda_2 \times \Lambda_2)}$  is injective.
- (d) There exist nonempty disjoint subsets  $\Lambda_1, \Lambda_2 \subset \Lambda$  with  $\Lambda_1 \cup \Lambda_2 = \Lambda$  such that  $\mathbf{A} \otimes \mathbf{A}|_{(\Lambda_1 \times \Lambda_2) \cup (\Lambda_2 \times \Lambda_1) \cup \operatorname{diag}(\Lambda)}$  is injective.

(e) There exists  $\lambda \in \Lambda$  for which  $\overline{\mathbf{A}} \otimes \mathbf{A}|_{(\{\lambda\} \times \Lambda) \cup (\Lambda \times \{\lambda\}) \cup \operatorname{diag}(\Lambda)}$  is injective. and  $|\Lambda| \leq \operatorname{rank} \mathbf{A} \ (\leq m)$  and  $\overline{\mathbf{A}} \otimes \mathbf{A}|_{\Gamma}$  is injective for every subpattern  $\Gamma \subset \Lambda \times \Lambda$ .

 $\triangleright$  Choose  $c \in \mathbb{C}^N$  randomly then  $\mathbf{G}_c \in \mathbb{C}^{N \times N^2}$  is injective (with probability 1)  $\Rightarrow$  (b)–(e) yields permissible patterns if  $|\Lambda| \leq N$ .

| (m, m) | $(k,\ell)$ |  |  |  | (n,n)  |
|--------|------------|--|--|--|--------|
|        |            |  |  |  | (0,0)  |
|        |            |  |  |  | (0, 1) |
|        |            |  |  |  | (0, 2) |
|        |            |  |  |  | (1,0)  |
|        |            |  |  |  | (1, 1) |
|        |            |  |  |  | (1, 2) |
|        |            |  |  |  | (2,0)  |
|        |            |  |  |  | (2,1)  |
|        |            |  |  |  | (2,2)  |

# Volker Pohl<sup>†</sup>

<sup>†</sup>Technische Universität München, Germany



(a)  $\mathbf{A}|_{\Lambda} \in \mathbb{C}^{m \times |\Lambda|}$  is injective. (b)  $\overline{\mathbf{A}} \otimes \mathbf{A}|_{\Lambda \times \Lambda} \in \mathbb{C}^{m^2 \times |\Lambda|^2}$  is injective.



### II. Generalized Diagonal Pattern

As a generalization of the diagonal pattern  $\Lambda_{\text{diag}} = \{(k, \ell, k, \ell) : k, \ell \in \mathbb{Z}_N\}$ , we consider patterns of the form



where  $n_{k,\ell} \in \mathbb{Z}_N$  and  $\ell_{k,n} \in \mathbb{Z}_N$  are arbitrary sequences in  $k, \ell$  and k, n.

for all  $\boldsymbol{c}$  in a dense open subset of  $\mathbb{C}^N$  with full measure.

▷ A generalized pattern is a psd-pattern only when it is a diagonal pattern.  $\triangleright$  Choosing  $c \in \mathbb{C}^N$  randomly  $\Rightarrow \overline{\mathbf{G}_c} \otimes \mathbf{G}_c|_{\Gamma}$  is invertible (with prob. 1).

### III. Scattered Patterns

 $\mathbb{Z}_{=0}^{1} \subset (\mathbb{Z}_{N} \times \mathbb{Z}_{N}) \times (\mathbb{Z}_{N} \times \mathbb{Z}_{N}),$ (4) with  $\lambda_{q,q'} \in V_p + (0,q)$  and  $\widetilde{\lambda}_{q,q'} \in V_p + (0,q')$ (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)(0,1)

$$\Gamma_p = \left\{ \left( \lambda_{q,q'}, \widetilde{\lambda}_{q,q'} \right) \right\}_{q,q'=0}^{N-1}$$



 $\triangleright$  Divide  $\mathbb{Z}_N \times \mathbb{Z}_N$  into N+1 additive subgroups  $V_p$  of cardinality N. ▷ Consider the cosets of these subgroups (left figure).  $\triangleright$  A pattern  $\Gamma$  is obtained by choosing one element from each coset (right figure). **Theorem:** Let  $N \geq 2$  be a prime and let  $\Gamma \subset (\mathbb{Z}_N \times \mathbb{Z}_N) \times (\mathbb{Z}_N \times \mathbb{Z}_N)$  be any pattern of the form (4). Then 1.  $\overline{\mathbf{G}_c} \otimes \mathbf{G}_c|_{\Gamma}$  is invertible for all c in a dense open subset of  $\mathbb{C}^N$  of full measure.



**Theorem:** Let  $N \ge 2$  be any integer and let  $\Gamma$  be any pattern of the above form. The matrix  $\overline{\mathbf{G}_{c}} \otimes \mathbf{G}_{c}|_{\Gamma} = [\overline{\pi(\lambda)c} \otimes \pi(\lambda')c]_{(\lambda,\lambda')\in\Gamma} \in \mathbb{C}^{N^{2} \times N^{2}}$  is invertible

2. there exist explicit vectors  $c \in \mathbb{C}^N$  for which  $\overline{\mathbf{G}_c} \otimes \mathbf{G}_c|_{\Gamma}$  is unitary.

 $\triangleright$  There are psd-pattern of this structure (upper-left  $3 \times 3$  corner in example).  $\triangleright$  Explicit construction of  $c \Rightarrow$  unitary  $\overline{\mathbf{G}_c} \otimes \mathbf{G}_c|_{\Gamma} \Rightarrow$  stable recovery.

#### Calgary, Canada, April 15–20, 2018