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Time-Varying Channels & Operators

� A time-varying communication channel is modeled by the input-output relation

y(t) =
(
Hx
)
(t) =

∫
R hH(τ, t)x(t− τ ) dτ , t ∈ R

with the time-varying impulse response hH.

� Similarly, taking the Fourier transform of hH(τ, ·), one obtains

y(t) =
(
Hx
)
(t) =

x

R×R
ηH(τ, ν) ei2πν(t−τ )x(t− τ ) dν dτ

=
x

R×R
ηH(τ, ν)

(
MνTτx

)
x(t) dν dτ (1)

with the spreading functions ηH(τ, ν) = (FhH(τ, ·)) (ν), with the translation
operator Tτ , and with the modulation operator Mν, given by(

Tτ x
)
(t) = x(t− τ ) and

(
Mν x

)
(t) = x(t) ei2πνt .

� Every bounded linear operator H : L2(R)→ L2(R) can be represented in the
form (1).

Identi�cation of Stochastic Operators

Stochastic channels: The spreading function η(τ, ν) may be considered as a
two-dimensional stochastic process with covariance function

RH(τ, τ ′, t, t′) = E
[
η(τ, t) η(τ ′, t′)

]
(2)

Problem: Assuming a sounding signal of the form

xs(t) =
∑

n∈Z cn δ(t− nT )

with an N -periodic sequence {cn}n∈Z. Determine the covariance function (2) of
the operator H from the covariance

Ry(t, t
′) = E

[
y(t)y(t′)

]
= E

[(
Hxs

)
(t)
(
Hxs

)
(t′)
]

of the channel output y(t) = (Hxs) (t).

Reformulation in Finite Dimensions

Stochastic operator estimation

Determine the covariance X = E[ηη∗] ∈ CN2×N2
of a random spreading vector

η ∈ CN2
from the covariance Y = E[yy∗] ∈ CN×N of the channel output

y = Hc =
∑N−1

k=0

∑N−1
`=0 η(k, `)

(
M`Tkc

)
= Gcη ,

where Gc = [M`Tkc]N−1
k,`=0 ∈ CN×N2

is the Gabor matrix generated by c ∈ CN .

� Columns of measurement matrix Gc ∈ CN×N2
are time-frequency shifts of c.

� To recover X from Y, one needs to solve the undetermined linear system

~y =
(
Gc ⊗Gc

)
~x with ~y = vec(Y) ∈ CN2

and ~x = vec(X) ∈ CN4

.

� ~x needs to be sparse to get a unique solution.

Problem: Assume the support pattern Γ of ~x (i.e. of X) is known. Find an
identi�er c ∈ CN such that the matrix Gc ⊗Gc|Γ is invertible.

Permissible & Defective Support Pattern

We consider (covariance) matrices X of size N 2 × N 2. The support pattern of
X is a set Λ ⊂ (ZN × ZN)× (ZN × ZN) such that

Λ =
{

(λ, λ′) ∈ Λ : X(λ, λ′) 6= 0
}

where λ = (k, l) with k, l ∈ ZN .

We say that Λ is a positive semi-de�nite (psd) pattern if

(λ, λ′) ∈ Γ ⇒ (λ, λ), (λ′, λ), (λ′, λ′) ∈ Γ. (3)

· · · .
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Gc ⊗Gc
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Γ Given a support pattern Γ. Is it possible to �nd
a c ∈ CN such that Gc ⊗Gc|Γ is injective?

� Yes! ⇒ Γ is permissible.

� No! ⇒ Γ is defective.

If Γ is permissible: How to choose c ∈ CN?

Examples of Defective Patterns

⇐ Arrowhead pattern
ΓL =

(
{λ}×Λ

)
∪
(
Λ×{λ}

)
∪ diag(Λ)

with λ ∈ Λ and |Λ| ≥ N + 1.

Rank-two defective pattern ⇒
ΓR = (Λ1 × Λ1) ∪ (Λ2 × Λ2)

I. Permissible Pattern of the First Kind

Theorem: Let A ∈ Cm×n with m ≤ n, and let Λ ⊆ {0, 1, . . . , n − 1} with
|Λ| ≥ 2. Then the following statements are equivalent

(a) A|Λ ∈ Cm×|Λ| is injective. (b) A⊗A|Λ×Λ ∈ Cm2×|Λ|2 is injective.

(c) There exist nonempty disjoint subsets Λ1,Λ2 ⊂ Λ with Λ1∪Λ2 = Λ such that
A⊗A|(Λ1×Λ1)∪(Λ2×Λ2) is injective.

(d) There exist nonempty disjoint subsets Λ1,Λ2 ⊂ Λ with Λ1∪Λ2 = Λ such that
A⊗A|(Λ1×Λ2)∪(Λ2×Λ1)∪ diag(Λ) is injective.

(e) There exists λ ∈ Λ for which A⊗A|({λ}×Λ)∪(Λ×{λ})∪ diag(Λ) is injective.

and |Λ| ≤ rankA (≤ m) andA⊗A|Γ is injective for every subpattern Γ ⊂ Λ×Λ.

� Choose c ∈ CN randomly then Gc ∈ CN×N2
is injective (with probability 1)

⇒ (b)�(e) yields permissible patterns if |Λ| ≤ N .
(k, `)(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)
(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(k, `)(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

II. Generalized Diagonal Pattern

As a generalization of the diagonal pattern Λdiag = {(k, `, k, `) : k, ` ∈ ZN}, we
consider patterns of the form

Γ = ∪L−1
k=0

{
(k, `, k, nk,`) : ` ∈ ZN

}
(k, `)(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Γ = ∪L−1
k=0

{
(k, `k,n, k, n) : n ∈ ZN

}
(k, `)(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

where nk,` ∈ ZN and `k,n ∈ ZN are arbitrary sequences in k, ` and k, n.

Theorem: Let N ≥ 2 be any integer and let Γ be any pattern of the above
form. The matrix Gc ⊗Gc|Γ = [π(λ)c ⊗ π(λ′)c](λ,λ′)∈Γ ∈ CN2×N2

is invertible
for all c in a dense open subset of CN with full measure.

� A generalized pattern is a psd-pattern only when it is a diagonal pattern.

� Choosing c ∈ CN randomly ⇒ Gc ⊗Gc|Γ is invertible (with prob. 1).

III. Scattered Patterns

� Divide ZN × ZN into N + 1 additive subgroups Vp of cardinality N .

� Consider the cosets of these subgroups (left �gure).

� A pattern Γ is obtained by choosing one element from each coset (right �gure).

Γp =
{

(λq,q′, λ̃q,q′)
}N−1

q,q′=0
⊂ (ZN × ZN)× (ZN × ZN), (4)

with λq,q′ ∈ Vp + (0, q) and λ̃q,q′ ∈ Vp + (0, q′)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

Theorem: Let N ≥ 2 be a prime and let Γ ⊂ (ZN ×ZN)× (ZN ×ZN) be any
pattern of the form (4). Then

1. Gc⊗Gc|Γ is invertible for all c in a dense open subset of CN of full measure.

2. there exist explicit vectors c ∈ CN for which Gc ⊗Gc|Γ is unitary.

� There are psd-pattern of this structure (upper-left 3× 3 corner in example).

� Explicit construction of c ⇒ unitary Gc ⊗Gc|Γ ⇒ stable recovery.
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