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Introduction

TDD Massive MIMO and Channel Reciprocity

A Massive number of Transmit (Tx) Antennas at the base station
(BS) talking to a small number of user equipment (UE) in Time
Division Duplexing (TDD) mode.

Channel observed in the digital domain from BS to UE (in general,
from antennas A to antennas B) not reciprocal.

RA

CA→B

CB→A

RB

TB

A B

HA→B

HB→A

TA

CA→B and CB→A model the reciprocal propagation channels.

Diagonal Matrices TA, RA, TB, RB model the response of the
transmit and receive RF front-ends
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Introduction

TDD Massive MIMO and Channel Reciprocity (Cont’d)

HA→B = RBCA→BTA, HB→A = RACB→ATB,

DL (Downlink) channel is derived from the UL (Uplink) channel for
Tx beamforming.

As CA→B = CT
B→A,

HA→B = RBT
−T
B︸ ︷︷ ︸

F−T
B

HT
B→A R−TA TA︸ ︷︷ ︸

FA

= F−TB HT
B→AFA. (1)

Relative calibration factor.

It has been shown that calibration at the BS is more crucial for
Multi-user MIMO performance.

Hence, in what follows, calibration will be done internally at the BS
without involving the UE.
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System Model

General Framework and antenna grouping at BS

Partition the M antennas into G groups with Mi antennas each.

Proposed in Jiang et al., “A Framework for Over-the-air Reciprocity
Calibration for TDD Massive MIMO Systems”.

Each group Ai transmits pilots Pi for Li channel uses.

Bidirectional Tx

{
Yi→j = RjCi→jTiPi +Ni→j ,
Yj→i = RiCj→iTjPj +Nj→i,

(2)
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System Model

General Framework

Eliminating the propagation channel C and after some matrix
manipulations, we get

Y(P)f = ñ, F = diag {f} = R−TT.

Y(P) =


(YT

2→1 ∗PT
1 ) −(PT

2 ∗YT
1→2) 0 . . .

(YT
3→1 ∗PT

1 ) 0 −(PT
3 ∗YT

1→3) . . .

0 (YT
3→2 ∗PT

2 ) −(PT
3 ∗YT

2→3) . . .
...

...
...

. . .


︸ ︷︷ ︸

(
∑G

j=2

∑j−1
i=1 LiLj)×M

.

where ∗ denotes the Khatri–Rao product (or column-wise Kronecker
product1).ñ is colored noise.

1A =
[
a1 a2 . . . aM

]
and B =

[
b1 b2 . . . bM

]
where ai and bi are

column vectors for i ∈ 1 . . .M , then, A ∗B =
[
a1 ⊗ b1 a2 ⊗ b2 . . . aM ⊗ bM

]
.
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System Model

General Framework (Cont’d)

Y(P)f = ñ

Least squares (LS) estimate of f

f̂ = argmin
f
‖Y(P) f‖2

= argmin
f

∑
i<j

‖(YT
j→i ∗PT

i )fi − (PT
j ∗YT

i→j)fj‖2 , (3)

To exclude the trivial solution, f̂ = 0, this needs to be augmented
with a constraint

C(f̂ , f) = 0.
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System Model

General Framework (Cont’d)

Typical choices for the constraint are
1) Norm plus phase constraint (NPC):

norm: Re{C(f̂ , f)} = ||f̂ ||2 − c , c = ||f ||2, (4)

phase: Im{C(f̂ , f)} = Im{f̂Hf} = 0. (5)

2) Linear constraint:
C(f̂ , f) = f̂Hg − c = 0 . (6)

The most popular linear constraint is the First Coefficient Constraint
(FCC), which is (6) with g = e1, c = 1.

We now proceed to investigate some optimal estimation methods and
performance limits.
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Optimal estimation methods and performance limits

Cramer Rao Bound (CRB) - Defining an auxiliary channel

Re-parameterize in terms of the relative calibration factors and an
auxiliary internal channel.

As Fi = R−Ti Ti,

Yi→j = RjCi→jTiPi +Ni→j = RjCi→jR
T
i︸ ︷︷ ︸

Hi→j

FiPi +Ni→j .
(7)

Auxiliary internal channel

Hi→j is a nuisance parameter and does not correspond to any
physically measurable quantity.

Hi→j is reciprocal: Hi→j = HTj→i.
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Optimal estimation methods and performance limits

Cramer Rao Bound

Stacking these observations into a vector

y =
[
vec(Y1→2)

T vec(YT
2→1)

T vec(Y1→3)
T . . .

]T
= H(h,P)f + n = F(f ,P)h+ n,

(8)

where h =
[
vec(H1→2)

T vec(H1→3)
T vec(H2→3)

T . . .
]T

,
f = [f1, f2, . . . , fM ] (Relative calibration factors for M antennas) and
n is the corresponding noise vector.
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Optimal estimation methods and performance limits

Cramer Rao Bound (Cont’d)

The composite matrices H and F are given by,

H(h,P) =


PT

1 ∗ H1→2 0 0 . . .

0 HT1→2 ∗PT
2 0 . . .

PT
1 ∗ H1→3 0 0 . . .

0 0 HT1→3 ∗PT
3 . . .

...
...

...
. . .



F(f ,P) =



PT
1 F1 ⊗ I 0 0 0 . . .

I⊗PT
2 F2 0 0 0 . . .

0 PT
1 F1 ⊗ I 0 0 . . .

0 I⊗PT
3 F3 0 0 . . .

0 0 PT
2 F2 ⊗ I 0 . . .

0 0 I⊗PT
3 F3 0 . . .

...
...

...
...

. . .


.

(9)
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Optimal estimation methods and performance limits

Cramer Rao Bound (Cont’d)

y = H(h,P)f + n = F(f ,P)h+ n,

The scenario is now identical to that encountered in some blind
channel estimation scenarios and hence we can take advantage of
some existing tools2 3.

Treating h and f as deterministic unknown parameters,
n ∼ CN (0, σ2I), the Fisher Information Matrix (FIM) J for jointly
estimating f and h is,

J =
1

σ2

[
HH
FH
] [
H F

]
. (10)

2Carvalho and Slock, “Semi–Blind Methods for FIR Multichannel Estimation”.
3Carvalho, Omar, and Slock, “Performance and complexity analysis of blind FIR

channel identification algorithms based on deterministic maximum likelihood in SIMO
systems”.
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Optimal estimation methods and performance limits

Cramer Rao Bound (Cont’d)

Real interest is in deriving the CRB for f , in the presence of the
nuisance parameters h.

Incorporating the effect of the constraint C on f , we can derive from4,
the following constrained CRB for f

CRBf = σ2Vf
(
VHf HHP⊥FHVf

)−1
VHf (11)

where PF = F(FHF)†FH is the projection operator on the column
space of matrix F and P⊥F = I− PF .

† corresponds to the Moore-Penrose pseudo inverse.

The M × (M−1) matrix Vf is such that its column space spans the

orthogonal complement of that of
∂C(f)
∂f∗

, i.e., PVf = P⊥∂C
∂f∗

.

4Carvalho and Slock, Cramér-Rao bounds for blind multichannel estimation.
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Optimal estimation methods and performance limits

Maximum Likelihood(ML) & LS

The log likelihood for the ML estimator may be written as
1

σ2
‖y −F(f ,P)h‖2.

Optimizing w.r.t. h leads to h = (FHF)†FHy.

Substituting back this estimate yields an ML estimator for f̂
minimizing

yHF⊥(F⊥HF⊥)†F⊥Hy, (12)

Now, it can be shown that,

Y(P)f = F⊥Hy = ñ, (13)

Hence, LS estimator minimizes ‖Y(P)f‖2 = yHF⊥F⊥Hy.
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Optimal estimation methods and performance limits

Maximum Likelihood(ML) & LS Cont’d

ML Metric LS Metric

yHF⊥ (F⊥HF⊥)† F⊥Hy yHF⊥F⊥Hy

Thus, ML estimator is LS with F dependent weighting.

In the case of single antenna grouping, (F⊥HF⊥) has a diagonal
structure and is a multiple of the Identity matrix if all calibration
values have equal magnitude.

This implies that the ML techniques are more useful when the
calibration factors vary over a significant range.
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Optimal estimation methods and performance limits

Variational Bayes (VB) Estimation

In VB, a Bayesian estimate is obtained by computing an
approximation (variational distribution) to the posterior distribution of
the parameters h, f

h, f priors : f ∼ CN (0, α−1IM), h ∼ CN (0, β−1INh
).

α, β are assumed to have themselves a uniform prior. Nh is the
number of elements in h.

The variational distribution, is chosen to minimize the
Kullback-Leibler distance between the true posterior distribution
p(h, f , α, β|y) and a factored variational distribution

p(h, f , α, β|y) ≈ qh(h) qf (f) qα(α) qβ(β).
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Optimal estimation methods and performance limits

Variational Bayes Estimation (Cont’d)

The factors can be obtained in an alternating fashion as,

ln(qψi
(ψi)) =< ln p(y,h, f , α, β) >k 6=i +ci, (14)

where ψi refers to the ith block of ψ = [h, f , α, β] and <>k 6=i
represents the expectation operator over the distributions qψk

for all
k 6= i. ci is a normalizing constant.

The log likelihood,

ln p(y,h, f , α, β) = ln p(y|h, f , α, β) + ln p(f |α) + ln p(h|β)
= −Ny lnσ

2 − 1

σ2
‖y −Hf‖2 +M lnα− α ‖f‖2

+Nh lnβ − β ‖h‖2 + c.

(15)

Here, Ny refers to the number of elements in y and c is a constant.
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Optimal estimation methods and performance limits

Variational Bayes Estimation - Overall algorithm

f ∼ CN (f̂ ,Cf̃ f̃ ) and h ∼ CN (ĥ,Ch̃h̃).

1: Initialization: Initialize f̂ using existing calibration methods.
Use this to determine ĥ, <α>,<β>.

2: repeat
3: <HHH>= HH(ĥ)H)(ĥ)+ <HH(h̃)H(h̃)>
4: f̂ = (<HHH> + <α> I)−1HHy
5: Cf̃ f̃ = (<HHH> + <α> I)−1

6: <FHF>= FH(f̂)F(f̂)+ <FH(f̃)F(f̃)>
7: ĥ = (<FHF> + <β> I)−1FHy
8: Ch̃h̃ = (<FHF> + <β> I)−1

9: <α>=
M

<‖f‖2>
, <‖f‖2>= f̂H f̂ + tr{Cf̃ f̃} .

10: <β>=
Nh

<‖h‖2>
, <‖h‖2>= ĥ

H
ĥ+ tr{Ch̃h̃}.

11: until convergence. 21 / 32



Optimal estimation methods and performance limits

Variational Bayes Estimation (Cont’d)

The log likelihood,

ln p(y,h, f , α, β) = −Ny lnσ
2 − 1

σ2
‖y −Hf‖2 +M lnα− α ‖f‖2

+Nh lnβ − β ‖h‖2 + c.
(16)

The parameters of the prior distributions of f and h act as
regularization parameters in their estimation.

The advantage of using VB is that it automatically computes the
optimal values for these regularization parameters too!!
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Optimal estimation methods and performance limits

Expectation Consistent Variational Bayes Estimation

For single antenna grouping (G =M), Cf̃ f̃ and Ch̃h̃ are diagonal

and <FH(f̃)F(f̃)>, <HH(h̃)H(h̃)> can be computed easily.

However, when G < M , these matrices are block diagonal.

To simplify the computation, we propose to approximate them with
multiples of the Identity matrix,

Cf̃ f̃ ≈
tr{(<HHH> + <α> I)−1}

M
IM

Ch̃h̃ ≈
tr{(<FHF> + <β> I)−1}

Nh
INh

.
(17)

We call this approach EC-VB (Expectation consistent5 VB).

5Opper and Winther, “Expectation Consistent Approximate Inference”.
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Optimal estimation methods and performance limits

VB and Alternating Maximum Likelihood (AML)

By forcing the matrices Cf̃ f̃ , Ch̃h̃ to zero and α, β to zero, this

algorithm reduces to the AML algorithm6 7.

AML iteratively maximizes the likelihood by alternating between the
desired parameters f and the nuisance parameters h in a deterministic
(non-Bayesian) setting.

6Carvalho and Slock, “Semi–Blind Methods for FIR Multichannel Estimation”.
7Carvalho, Omar, and Slock, “Performance and complexity analysis of blind FIR

channel identification algorithms based on deterministic maximum likelihood in SIMO
systems”.
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Simulation Results

Simulation setup

We assess numerically the performance of various calibration
algorithms and also compare them against their CRBs.

The Tx and Rx calibration parameters for the BS antennas are
assumed to have random phases uniformly distributed over [−π, π]
and amplitudes uniformly distributed in the range [1− δ, 1 + δ].

SNR is defined as the ratio of the average received signal power
across channel realizations at an antenna and the noise power at that
antenna.

Transmission happens from one antenna at a time (G =M).
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Simulation Results

Mean square error performance of the algorithms.
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Figure: Comparison of single
antenna transmit schemes with the
CRB (G =M = 16).

Curves generated over one
realization of an i.i.d.
Rayleigh channel. The first
coefficient known constraint
is used.

Rogalin 8method performs
the LS as was presented
earlier and improves over
Argos by using all the
bi-directional received data.

AML outperforms the
Rogalin performance at low
SNR.

8Rogalin et al., “Scalable synchronization and reciprocity calibration for distributed
multiuser MIMO”.
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Simulation Results

CRB vs MSE.
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Figure: Comparison of single
antenna transmit schemes with the
CRB (G =M = 16).

AML curve overlaps with
the CRB at higher SNRs.

Also plotted is the CRB as
given in9 assuming the
internal propagation
channel is fully known (the
mean is known and the
variance is negligible) and a
(small) underestimation of
the MSE can be observed
as expected.

9Joao Vieira et al. “Reciprocity Calibration for Massive MIMO: Proposal, Modeling
and Validation”. In: IEEE Trans. Wireless Commun. (2017)

28 / 32



Simulation Results

Convergence of the Optimal algorithms.
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Figure: Convergence of the various iterative schemes for M = 16 and single
antenna transmission.
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Conclusion

Conclusion

A simple and elegant derivation of the CRB has been presented for a
general calibration framework.

An optimal estimation algorithm based on VB is also introduced
along with a variant.

All these techniques have been compared via simulations in terms of
both MSE performance and speed of convergence.

31 / 32



Conclusion

Thank You !!
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