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Introduction
The performance of deep neural network (DNN) based monaural speech 

separation methods is limited in reverberant and noisy room 

environments. Therefore, we propose a new DNN training target which 

incorporates geometric information describing the target speaker and 

microphone to improve the performance in reverberant and noisy room 

environments.

Motivations

Related methods
• Statistical signal processing and computational auditory scene analysis

(CASA) based methods [1].

• Deep neural network (DNN) based methods [2][3].

Challenges
• The reverberant and noisy room environments are complex, which 

increases the difficulty of  speech separation.

• The new training target that can better reflect the relation between the 

clean speech and noisy speech mixture should be developed.

Algorithm 
Direct path impulse response 
• The reverberant speech mixture can be modelled as:

𝑦 𝑡 = 𝑠 𝑡 ∗ ℎ 𝑡
• The impulse response can be divided into the direct path and reflections 

as:

ℎ 𝑡 = ℎ𝐷 𝑡 + ℎ𝑅 𝑡
• The direct path means the speech is transmitted from speaker to sensors 

without any reflections. 

• The geometric information provides the distance and bearing between 

the speech source and the microphone, which helps to estimate direct 

path impulse response.

Monaural speech separation setup within a reverberant room environment

• The attenuation of sound: 𝛽 =
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• The direct path impulse response:
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• The reverberant speech mixture can be represented as:

𝑦 𝑡 = 𝑠 𝑡 ∗ ℎ𝐷 𝑡 + ℎ𝑅 𝑡
= 𝑠 𝑡 ∗ ℎ𝐷 𝑡 + 𝑠 𝑡 ∗ ℎ𝑅 𝑡
= 𝑠𝐷(𝑡)+𝑠𝑅(𝑡)

Training target
• The  direct path ratio mask (DRM) is defined as:

𝐷𝑅𝑀(𝑡, 𝑓) =
𝑆𝐷

2(𝑡, 𝑓)

𝑆𝐷
2 𝑡, 𝑓 + 𝑁2 (𝑡, 𝑓)

𝜂

• 𝑆𝐷
2 𝑡, 𝑓 denotes the energy of the direct path speech at time 𝑡 and 

frequency frame 𝑓, and 𝑁2 (𝑡, 𝑓) is the energy of noise. And 𝜂 is the 

tunable parameter to scale the mask. 

• Advantage: the proposed DRM requires less accuracy in the 

separation of noisy reverberant speech mixture, because the DRM 

mitigates reflections and noise. 

• The direct path impulse response based speech is estimated as:
 𝑆𝐷 𝑡, 𝑓 = 𝑌 𝑡, 𝑓 𝐷𝑅𝑀(𝑡, 𝑓)

• Then the speech reconstruction is applied to generate the desired 

speech source.

 𝑠 𝑡 = 𝐼𝐹𝐹𝑇  𝑆𝐷 𝑡, 𝑓 𝐻𝐷(𝑡, 𝑓)−1

The block diagram of the propose reverberant and noisy speech separation system

Experiments
Settings
• Speech database: IEEE corpus. 

• Noise database: NOISEX (Factory noise and Babble noise).

• The direct path impulse response is obtained by using the geometric 

information. 

• Impulse responses: the synthetic and real room impulse responses 

(RIRs).

• Performance measures: short-time objective intelligibility (STOI) and 

perceptual evaluation of speech quality (PESQ).

• The number of layers: 6 (4 hidden layers).

• The number of units: 1024. 

• The activation function of hidden unit: rectified linear unit (ReLU) function.

• Dropout rate:0.2.

Evaluations with synthetic RIRs

• In terms of PESQ and STOI, the proposed DRM outperforms the ideal ratio mask (IRM) at 

all RT60s.

Evaluations with real RIRs

• The direct to reverberant ratio (DDR) has positive effect on separation performance.

• The proposed method can separate the target speech from the noisy reverberant mixture in 

both simulated and real room environments, effectively.

Conclusion and Future Work
• We exploited the geometric information to provide the position of the target speaker and 

microphone to estimate the direct path impulse response.

• Based on the direct path speech, we calculated the DRM that is a new training target. The 

experimental results confirmed the DRM outperforms the state-of-the-art IRM based method.

• More effort will be dedicated to improve the proposed method for moving sources.
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SNR Level 3 dB 0 dB -3 dB

RT60(s) Targets Factory Babble Factory Babble Factory Babble 

0.3

Unprocessed 0.92 1.06 0.65 0.87 0.48 0.52

IRM 2.40 2.45 1.95 2.25 1.72 2.03

DRM 2.49 2.50 2.05 2.35 1.83 2.19

0.5

Unprocessed 0.64 0.83 0.51 0.68 0.45 0.55

IRM 1.89 2.18 1.69 2.00 1.48 1.83

DRM 2.05 2.25 1.79 2.12 1.60 1.95

0.7

Unprocessed 0.50 0.64 0.47 0.55 0.44 0.52

IRM 1.74 1.92 1.55 1.74 1.31 1.62

DRM 1.85 2.11 1.61 1.94 1.44 1.78

0.9

Unprocessed 0.40 0.60 0.35 0.47 0.31 0.41

IRM 1.51 1.75 1.32 1.61 1.23 1.46

DRM 1.59 1.90 1.43 1.74 1.34 1.60

SNR Level 3 dB 0 dB -3 dB

RT60(s) Targets Factory Babble Factory Babble Factory Babble 

0.32

Unprocessed 1.02 1.25 0.74 0.99 0.56 0.78

IRM 2.31 2.65 2.24 2.51 1.99 2.31

DRM 2.42 2.70 2.37 2.57 2.11 2.39

0.47

Unprocessed 0.64 0.85 0.49 0.67 0.41 0.57

IRM 2.17 2.43 1.99 2.31 1.80 2.14

DRM 2.28 2.53 2.11 2.40 1.89 2.21

0.68

Unprocessed 0.74 0.91 0.69 0.80 0.52 0.61

IRM 2.21 2.49 2.00 2.24 1.79 2.13

DRM 2.33 2.51 2.11 2.42 1.92 2.22


