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Decision-making under uncertainty

• Inference: the process of reaching conclusions from data 

• Active Inference: can actively chose experiments to gather new data 

• When such inference is used for control, results in the explore-
exploit tradeoff: do I 

• Gather more information about the system? 

• Use existing information to maximize current performance? 

• Many systems have significant structure which allows humans to 
achieve good performance. How to capture?
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Grid task: abstraction of spatial search

• Study human behavior in  
spatial search tasks 

• Discretize space 

• Earn points based on location 
(unknown to subject a priori) 

• Subject’s goal: earn points by 
navigating through the grid 
(i.e., find peak quickly) 

• Restricted movement or  
allow jumping in space
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The multi-armed bandit problem

• A canonical representation of the explore-exploit tradeoff 

•     options (arms), indexed by  

• Each arm has an associated distribution           with mean       (unknown) 

• For each sequential decision time                          , pick arm    , 
receive reward  

• Objective: maximize cumulative expected reward
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Regret

• Bounds on optimal performance more easily formulated in terms of regret: 

• Define                      and                      , expected regret at time t  
 
 
 

• Objective: minimize cumulative expected regret (analytical quantity)  
 

m⇤ = max
i

mi Rt = m⇤ �mit
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Bounds on optimal performance

• A fundamental result of Lai and Robbins (1985) shows 
 

• So regret grows at least logarithmically in time: 

• Lai-Robbins is an asymptotic result; the literature seeks uniform bounds (in    ) 

• Uniform logarithmic regret is considered optimal

JR(T ) � C log T

Kullback-Liebler 
divergence

JR(T ) < C0 log T C0 C differ by a constant factor,

E
⇥
nT
i

⇤
�

✓
1

D(pi||pi⇤)
+ o(1)

◆
log T

�6

pi = N (mi,�
2
s)

pi⇤ = N (mi⇤ ,�
2
s)

D(pi||pi⇤) =
�2

i

2�2
s

T

Horizon

T

JRLoss =



 1 

 
QUALIFYING EXAMINATION 

GUIDELINES 
FOR 

PH.D. STUDENTS 
 
 

 IN THE  

 

DEPARTMENT OF 
 AEROSPACE & MECHANICAL 

ENGINEERING 
 
 
 

 
 
 
 
 

 
 August 2013 

 
 
 

Aerospace and Mechanical Engineering Department 

College of Engineering 

University of Arizona 

Tucson, Arizona 85721 

http://www.ame.arizona.edu  

(520) 621-4692 

  

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

t

R
(t
)

 

 

Linear best fit
Power best fit
Log best fit
Frequentist mean regret

Observed human performance phenotypes

• Data from grid task; short horizon 

• Fit models to observed regret:  
 
 

• This set of models captures most 
observed performance 

• Some people display logarithmic 
regret: “optimal” performance! 

• Can we capture these three classes  
in a model?

R(t) = a+ bt

R(t) = atb

R(t) = a+ b log t
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The Upper Credible Limit Algorithm (UCL)

• Prior belief  

• Heuristic 

• For                       , achieve  
logarithmic regret for good priors 

• And linear regret for bad priors 

• Prior quality depends on  
accuracy and certainty
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Stochastic UCL

• Human decision making is stochastic, so extend UCL to stochastic policies 

• Use Boltzmann/softmax action selection 

• Use dynamic temperature parameter 
 
 
 
where                                 is the minimum gap between heuristic values, 

• Stochastic UCL achieves logarithmic regret with a slightly larger constant 

• But gains potential robustness to wrong priors
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Parameter estimation for UCL

• Have a model; need an observer 

• Stochastic UCL defines a maximum likelihood estimator; requires solving hard 
non-convex optimization problem 

• If the heuristic is a linear function of the unknown parameters, we get a 
generalized linear model (GLM)  
 

• Reduces to convex problem     estimators with provable convergence 

• Can be applied to stochastic UCL via linearization

Reverdy and Leonard, TASE 2016
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Parameter estimates

• Data from subjects with high performance 

• Use GLM-based estimator 

• Find statistically-significant  
difference between  
parameters for different landscapes 

• Evidence for adapted strategies/priors
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Implications for Human-Machine Inference

• Some people (“experts”) are really good at inference, 
probably due to good priors 

• Developed tools to learn these priors from behavior 

• Algorithms can use priors to make automated decisions 

• Ready to be leveraged to build human-machine active-
inference and control systems
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preverdy@email.arizona.edu 
http://www.paulreverdy.com/

Thank you!

mailto:preverdy@email.arizona.edu
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