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Decision-making under uncertainty

Inference: the process of reaching conclusions from data
- Active Inference: can actively chose experiments to gather new data

- When such inference is used for control, results in the explore-
exploit tradeoft; do |

- Gather more information about the system?
Use existing information to maximize current performance?

Many systems have significant structure which allows humans to
achieve good performance. How to capture?



Grid task: abstraction of spatial search

You just earned 3c points mean

Study human behavior in ——— —*jandom noise
spatial search tasks [T ]
® gCurrefnt location

Discretize space

Earn points based on location
(unknown to subject a priori)

Subject’s goal: earn points by
navigating through the grid
(i.e., find peak quickly)

| Goal |

Restricted movement or .
100

allow jumping in space

Spatial multi-armed bandit task




The multi-armed bandit problem

A canonical representation of the explore-exploit tradeoff
N options (arms), indexed by ¢
Each arm has an associated distribution p; () with mean m,; (unknown)

For each sequential decision time ¢ € {1,...,T}, pick arm 4,
receive reward ry ~ p; (1)

Objective: maximize cumulative expected reward
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Regret

Bounds on optimal performance more easily formulated in terms of regret:

Define my = maxm; and R; = m, —m,;, expected regret at time t

Objective: minimize cumulative expected regret (analytical quantity)
Omniscient optimal Mean value of
T \ T decisions made
t—1 tzl\Sum over decisions

N A; = m, —m,; . EXpected regret
— Z AEn!] n? . Number of times

Ai=1 option I chosen
Sum over options >



BSounds on optimal performance

A fundamental result of Lai and Robbins (1985) shows pi = N(m;, Uf )
Pix = N(mi*,ai)
1
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So regret grows at least logarithmically in time: Kullback-Liebler

divergence

Jr(T) > ClogT

Lai-Robbins is an asymptotic result; the literature seeks uniform bounds (in T)

Uniform logarithmic regret is considered optimal

Jr(T) < C'logT  (C', C differ by a constant factor




Observed human performance phenotypes

3000

Data from grid task; short horizon

2500 -

Fit models to observed regret:

R(t)= a+bt
R(t) — atb S 1500
R(t)= a+blogt )

This set of models captures most
observed performance

Some people display logarithmic
regret: “optimal” performance!

Can we capture these three classes
in a model?
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Linear best fit
Power best fit
Log best fit

Frequentist mean regret

Frequentist algorithm
performance
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The Upper Credible Limit Algorithm (UCL)

e.g., length scale )\

Mean reward values

Covariance belief: smoothness

v
Prior belief m ~ N (o, Xo)
/

Mean belief

\

Heuristic

AI{’ Info gain

“

Qi = pi + i@ (1 — ay)

N———— —

For ay = 1/(v2met), achieve
logarithmic regret for good priors

And linear regret for bad priors

Prior quality depends on
accuracy and certainty

Reverdy et al. Proc. IEEE (é°o1 4)
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C? Uncertainty

Update: Kalman filter, no dynamics

A Ambiguity bonus: value of information

——7R(t) (linear)

o500l | =~~~ Linear best fit

500

R(t) (log)
Log best fit

Good prior
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Stochastic UCL

Human decision making is stochastic, so extend UCL to stochastic policies

.
Py

Use Boltzmann/softmax action selectior), Heuristic value
Py = SP(@i/v)
Selection probability’ Z j=1 eXP(Q;/ Uyt\)
Use dynamic temperature parameter “Temperature”
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where AQY,;, = min |Q; — Q%|is the minimum gap between heurlstlc values, D > 0

17

Stochastic UCL achieves logarithmic regret with a slightly larger constant

But gains potential robustness to wrong priors

Reverdy et al. Proc. IEEE (2014) °



Parameter estimation for UCL

Have a model; need an observer

Stochastic UCL defines a maximum likelihood estimator; requires solving hard
non-convex optimization problem

If the heuristic is a linear function of the unknown parameters, we get a
generalized linear model (GLM)

P, — exp(01x?t)

Z;\f:l exp(071'x")

Reduces to convex problem=- estimators with provable convergence

Can be applied to stochastic UCL via linearization

Reverdy and Leonard, TASE 2016 1



Parameter estimates

Data from subjects with high performance

Use GLLM-based estimator Y 299

210 25.3

Find statistically-significant | of |3.32E+05
difference between 53 subjects
parameters for different landscapes

Evidence for adapted strategies/priors

1Y 29.5

Lo 6.08

o5 |3.35E+05| "\ =
17 subjects  , .\

PR and Leonard, TASE 2016 - .\436 T




Implications for Human-Machine Inference

- Some people (“experts”) are really good at inference,
probably due to good priors

»+ Developed tools to learn these priors from behavior
- Algorithms can use priors to make automated decisions

Ready to be leveraged to build human-machine active-
iInference and control systems

?



Thank you!

preverdy@email.arizona.edu
http://www.paulreverdy.com/
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