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q Verbal	protest	is	a	commonly	reported	challenging	
behavior	observed	in	children	with	autism

q Definition:	sensory	overload-induced	
crying,	screaming,	shouting,	and	yelling

q Detection	will	help	us
• Understand	frequency	and	context	of	occurrence
• Predict	and	prevent
• Reduce	burden	on	caregiver
• Develop	metric	to	evaluate	the	efficacy	of	therapy

q Can	we	detect	whether	a	child	with	autism	is	exhibiting	
verbal	protest	from	audio	recordings?

Motivation

Contribution
q Curation	of	a	verbal	protest	audio	dataset
q Development	of	verbal	protest	detection	models

• Can	work	in	a	resource-constrained,																								
real-time	setting

• Noise	tolerant
• Limited	false	positives
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q GMM	model	is	lightweight	but	produces	more	false	positives
q CNN	model	reduces	false	positive	rate	but	requires	more	resources
q Ensemble	model	can	be	a	superior	choice
q Future	work	is	to	explore	reducing	verbal	protest	episodes	by	utilizing	

biomarkers	and	characteristics	of	the	child	and	their	environment.
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Verbal	protest Noise Speech

RLLVerbalProtest =	LVerbalProtest – max(LSpeech,	LNoise, LMusic,	LEmotionalSpeech)

Intra-Group Inter-Group
A P R A P R

GMM-N .933 .916 .967 .690 .741 .780
GMM-E .930 .913 .950 .643 .726 .699
CNN-E .901 .929 .834 .722 .817 .617
CNN-E .880 .927 .808 .710 .896 .515
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False	positive	rate	for	real-world	
evidence	dataset
• GMM-N	(0.100)	and	CNN-N	(0.367)
• GMM-E	(0.003)	and	CNN-E	(0.007)

Ensemble	model	reduces	the	
false	positive	rate	to	0.001

Three	instances	of	verbal	protest

Training	Perturbation
(Urban	sound	dataset)

25	ms	window,	10	ms	step

Locally	Interpretable	Model-Agnostic	Explanations	(LIME)


