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Introduction

Introduction

Boolean networks have emerged as an effective model of the
dynamical behavior of regulatory circuits consisting of bi-stable
components.

In the Boolean network model, the transcriptional state of each gene
is represented by 0 (OFF) or 1 (ON), and the relationship among
genes is described by logical gates updated and observed at discrete
time intervals.

This model has been successful in accurately modeling the dynamics
of the cell cycle in the Drosophila fruit fly, in the Saccharomyces
cerevisiae yeast, as well as the mammalian cell cycle.
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Partially-Observable Boolean Dynamical Systems

Partially-Observable Boolean Dynamical Systems

Boolean State Transition Model: there is uncertainty in state
transition. The sequence of state vectors {Xk ; k = 0, 1, . . .} is a
Markov stochastic process, called the state process, specified by

Xk = f (Xk−1,uk−1) ⊕ nk , (1)

uk−1 and f are the input and network function, respectively, whereas
{nk ; k = 1, 2, . . .} is a white noise process.

Observation Model: In most real-world applications, the system state
is only partially observable, and distortion is introduced in the
observations by environmental or sensor noise:

Yk = h (Xk , vk) , (2)

where vk is the observation noise.
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Boolean Kalman Filter

Boolean Kalman Filter

The Boolean Kalman Filter (BKF) is the recursive minimum mean-square
error (MMSE) state estimator X̂k = h(Y1, . . . ,Yk) of the state Xk ,
according to the (conditional) mean-square error (MSE):

MSE(Y1, . . . ,Yk) = E
[
||X̂k − Xk ||2 | Yk , . . . ,Y1

]
(3)

Theorem

(Boolean Kalman Filter.) The optimal minimum MSE estimator X̂k of
the state Xk given the observations Y1, . . . ,Yk up to time k , is given by

X̂k = E [Xk | Yk , . . . ,Y1] , (4)

where v(i) = Iv(i)>1/2 for i = 1, . . . , d .
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Boolean Kalman Filter

Define the following distribution vectors of length 2d :

Πk|k(i) = P
(
Xk = xi | Yk , . . . ,Y1

)
,

Πk|k−1(i) = P
(
Xk = xi | Yk−1, . . . ,Y1

)
,

∆k|k(i) = P
(
Yk+1, . . . ,YT | Xk = xi

)
,

∆k|k−1(i) = P
(
Yk , . . . ,YT | Xk = xi

)
,

(5)

Prediction Matrix:

(Mk)ij = P(Xk = xi | Xk−1 = xj)

= P
(
nk = xi ⊕ f(xj , uk−1)

)
,

(6)

Update Matrix:

(Tk)jj = P
(
Yk | Xk = xj

)
, (7)

Boolean States: A = [x1...x2
d

]
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Boolean Kalman Filter

Boolean Kalman Filter
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Boolean Kalman Smoother

Boolean Kalman Smoother

The Boolean Kalman Smoother (BKS) is the minimum mean-square error
(MMSE) state estimator X̂S = g(Y1, . . . ,YT ) of the state XS , where
1 < S < T , according to the (conditional) mean-square error (MSE):

MSE(Y1, . . . ,YT ) = E
[
||X̂S − XS ||2 | YT , . . . ,Y1

]
(8)

Theorem

(Boolean Kalman Smoother.) The optimal minimum MSE estimator
X̂S of the state XS given the observations Y1, . . . ,YT , where 1 < S < T ,
is given by

X̂S = E [XS | YT , . . . ,Y1] , (9)

where v(i) = Iv(i)>1/2 for i = 1, . . . , d .
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Boolean Kalman Smoother

Boolean Kalman Smoother
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Numerical Experiments with RNA-Seq Count Data

Parametric State Transition Model:

fi (Xk−1,uk−1) =

{
1,

∑
j aij(Xk−1)j + bi + (uk−1)i > 0

0,
∑

j aij(Xk−1)j + bi + (uk−1)i < 0
(10)

aij = +1 (Positive Regulation), aij = −1 (Negative Regulation), aij = 0 (No Regulation)

bi = +1/2 (Positively Biased), bi = −1/2 (Negatively Biased)

f

f

f
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Numerical Experiments with RNA-Seq Count Data

RNA-Seq Observation Model:
1 RNA-seq Data

In this study, we choose to use a Poisson model for the number of
reads for each transcript:

P(Yki = m | λki ) = e−λki
λmki
m!

, m = 0, 1, . . . (11)

λki is the mean read count of transcript i at time k

log(λki ) = log(s) + µb , if Xki = 0 ,

log(λki ) = log(s) + µb + δi , if Xki = 1 .
(12)

s: sequencing depth,
µb > 0: Baseline expression,
δi > 0: Differential expression .
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Numerical Experiments with RNA-Seq Count Data

Case Study: p53-MDM2 Negative Feedback Loop Pathway
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Numerical Experiments with RNA-Seq Count Data

Average Performance of BKF and BKS.
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Numerical Experiments with RNA-Seq Count Data
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Numerical Experiments with RNA-Seq Count Data

Case Study: Cell Cycle Regulatory Network
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Numerical Experiments with RNA-Seq Count Data
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Conclusions and Future Work

Conclusions and Future Work

We proposed a method for state estimation for Boolean dynamical
system observed though a single time series of noisy measurements
given the entire history of observations.

Future work includes:

Dealing with the network inference problem in the presence of batch
data.

Developing methods for discrete, continuous and mixed parameter
estimation.

Deriving efficient methods for large networks exploring sparsity, for
both state and parameter estimation.
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