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Introduction

• In block sparse signals groups of entries are active simultaneously.

• Block sparse signal recovery can be formulated as finding the signal with
the minimum number of active groups that describes the observation.

• In general, this is a complex problem. A relaxation is to find the signal
with the smallest sum of group energies.

• Bayesian approaches have also been proposed for group sparse problems
by generalizing Sparse Bayesian Learning (SBL).

• In this paper, a Weighted Block Sparse Bayesian Learning is proposed for
sparse vector recovery.

Block Sparse Bayesian Learning (BSBL)

• Consider the system y = Gx + n, n ∼ N(0, σ2I) , G ∈ Rm×n, and
x ∈ Rn.

• Assume each block xi ∈ Rdi×1 in x follows a parametrized multivariate
Gaussian distribution, i.e.,

p(xi; gi,Bi) ∼ N (0, giBi), (1)

where gi ≥ 0 controls the block sparsity of x.

• Assuming independence between the blocks, p(x) can be written as
p(x) ∼ N (0,Σ0), where Σ0 = diag{g1B1, ...., gmBm}.

• The posterior of x is [1]

p(x;y, σ2, {gi,Bi}mi=1) = N (µx,Σx), (2)

where
µx = Σ0G

T (σ2I + GΣ0G
T )−1y, (3)

and
Σx =

(
Σ−10 + σ−2GTG

)−1
. (4)

• Given the parameters σ2 and {gi,Bi}mi=1, the Maximum a Posteriori
(MAP) estimate of x is x̂ = µx.

• The parameters can be estimated by minimizing

L(σ2, {gi,Bi}mi=1) = log|σ2I + GΣ0G
T |+

yT (σ2I + GΣ0G
T )−1y.

(5)

• Differentiating L w.r.t. gi, σ
2, and Bi, and equating to zero we get

gi =
1

di
Tr[B−1i (Σi

x + µi
x(µ

i
x)
T )], i = 1, 2, ...,m, (6)

σ2 =
‖y −Gµx‖2 + Tr[ΣxG

TG]

M
, (7)

Block Sparse Bayesian Learning (BSBL)

• Differentiating L w.r.t. Bi, and equating to zero we get

Bi =
1

m

m∑
i=1

Σi
x + µi

x(µ
i
x)
T

gi
, (8)

where µi
x is the ith block in µx, Σi

x is the corresponding ith principal
diagonal block in Σx, and di is the length of the ith block.

The Proposed Weighted Block Sparse Bayesian
(WBSBL) Approach

• Consider αi =
1
gi
∼ Gamma(ai, bi)

• Using a Type II maximum likelihood procedure as in BSBL, the cost
function to be minimized is

L(σ2, {gi,Bi}mi=1) = log|σ2I + GΣ0G
T |+

yT (σ2I + GΣ0G
T )−1 + 2

m∑
i=1

bi
gi
+ 2

m∑
i=1

ailog(gi).
(9)

• Differentiating w.r.t. gi, σ
2, and Bi, we get

gi =
Tr[B−1i (Σi

x + µi
x(µ

i
x)
T )] + 2bi

di + 2ai
(10)

and σ2 and Bi are as described in (7) and (8), respectively.

• Suppose we have access to a weight vector w, which contains large
values corresponding to active xi blocks, and low values corresponding to
non active blocks in x.

• Set ai =
1
wi

and bi = wi. Assuming that wi 6= 0, update the rule for gi as

gi =
Tr[B−1i (Σi

x + µi
x(µ

i
x)
T )T ] + 2wi

di + 2/wi
. (11)

Simulation Results

• 1000 Monte Carlo simulations are performed. In each trial, a matrix G
with entries following N(0, 1) is constructed.

• k indices are randomly selected as the locations of the non-zero active
blocks.

• The values of the non-zero entries in all the blocks are taken from
N(5, 0.25).

• Additive white Gaussian noise is added to Gx with SNR equal to 5 dB,
2 dB, and 0 dB.

Simulation Results

• MUSIC based on 100 snapshots is used to construct the weighting vector
w.
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Figure 1: 3 sources, 2 dB
SNR, block size of 2
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Figure 2: 3 sources, 0 dB
SNR, block size of 2
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Figure 3: 5 sources, 5 dB
SNR, block size of 2
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Figure 4: 6 sources, 5 dB
SNR, block size of 2

Conclusion

• Weighted Block Sparse Bayesian Learning approach has been proposed,
which assigns distinct variance priors to each block, giving some
hyperparameters more importance over the others.

• The importance of a specific parameter is obtained based on a rough
estimate of the underlying block sparse vector, obtained via a methods
that does encourage sparsity.

• Simulations have shown significant improvement in terms of probability
of detection and false alarm, especially at low SNR scenarios.

• WBSBL degrades slower as the number of active block increased, as
compared to BSBL.
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