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INTRODUCTION
In the study of how the brain integrates information, communication between disjoint regions is often
described using functional connectivity (FC). Over the last two decades, FC analysis has relied on a sta-
tionary assumption, i.e. that the statistical dependencies between regions do not change over time. This
assumption has been shown to disregard a potential wealth of information in the changes in between-
region connectivity, especially in resting-state functional magnetic resonance imaging (rs-fMRI) where
this analysis approach has been coined dynamic functional connectivity (dFC) [1].
In this paper, we investigate how different modeling assumptions on the dynamics in resting state fMRI
translate into classification accuracy using a cohort of patients diagnosed with schizophrenia (SZ) and
healthy controls (HC). We accomplish this using the Bayesian hidden Markov model framework [4]
with different emission models and investigate their ability to discriminate between SZ and HC. The
different emission models, that each encode different assumptions on dynamics, will be compared using
classification accuracy on held-out data.

Research Questions:

• How do different assumptions on dynamic functional connectivity
models influence classification performance?

• To what extent does modeling dynamic (as opposed to static) func-
tional connectivity influence classification performance?

HIDDEN MARKOV MODEL
Let xt ∈ Rp be a Gaussian distributed signal at time point t. The VB-HMM with K states has the
generative model for the observations xt for t = 1...T ,

π0 ∼ Dir(κ0) π(k) ∼ Dir(κ(k)) zt|zt−1 ∼ Multinomial(π(zt−1)),

Σ(k)−1

∼ W(Σ0, ν0), µ(k) ∼ N (µ0, λ
−1Σ(k)) xt ∼ N (µ(zt),Σ(zt)),

How we parameterize the states, i.e. µ(k) and Σ(k), encodes our assumptions on the brain’s dynamics.
A zero mean model with full covariance for instance comes conceptually close to the sliding-window
k-means approach from [1]. We highlight different ways of parameterizing dynamic functional connec-
tivity
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To create a classifier from an HMM-model we use a density-based approach. For that we use the pre-
dictive likelihood[3], p(X∗|M), on held out subjects, yielding the Bayes classifier,

p(MSZ |X∗) =
p(X∗|MSZ)p(MSZ)∑

c={HC,SZ}
p(X∗|Mc)p(Mc)

RESULTS
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Left panel:
In the six emission models we have chosen there are some equivalences in the representations which
we have to take into consideration when interpreting the results. To illustrate this we have generated
two data sets (mimicking two groups for classification) from two “Stationary Diag-Cov" . In the bottom
of the figure we show the static covariance matrix for each group, i.e., equivalent to fitting the
"Zero-Mean" model with one state.

Right panel:
We ran our analysis on a cohort consisting of 192 subjects’ resting-state fMRI data (COBRE) [2]. Of
those, 101 subjects were diagnosed as schizophrenic or schizoaffective (SZ) and 91 subjects were
healthy controls (HC). We ran a group ICA using the GIFT toolbox with 85 components and after
removal of components (fALLF and spatial overlap with known noise sources) we ended up with 44
components. We estimate the accuracy of the classifiers by stratified 10-fold cross-validation.

Conclusions:

• The discriminative signal is most simply characterized by within com-
ponent differences, and not in their coupling.

• We saw that the performance of the different models was not highly
influenced by the number of states chosen in the model, i.e. static FC
suffices in the discriminative task.
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