

FUNCTIONAL CONNECTIVITY STATES OF THE BRAIN **USING RESTRICTED BOLTZMANN MACHINES**

INTRODUCTION

- **Aim:** Identification of a small number of network states that describe the patterns of brain connectivity during rest.
- Methodology: Feature extraction using a restricted Boltzmann machine (RBM) with input as the dynamic functional connectivity networks (dFCN).
- Constructing dFCN relies on sliding window correlation, which helps to understand the timevarying nature of FC.

DYNAMIC FC NETWORKS

Input: Bangor rs-fMRI dataset from the 1000 Functional Connectomes Project containing 20 healthy subjects.

RBM

Zeynep Kahraman Boğaziçi University

Selin Aviyente Michigan State University

OF HIDDEN NODES IN RBM

The ratio of the maximum absolute weight for each state to the overall maximum weight is plotted wrt the state (feature) index for RBMs with different *nHid*. Increasing the number of states after 6 will not result in a significant change in data representation.

states.

FC STATES

- In State1 and 3, DMN is dominant and anticorrelated with sensorimotor regions AN, VN and SMN.
- State2 is an anti-correlated module consisting of CCN with SMN, AN and SCN.
- State4 summarizes the interactions of VN with cognitive regions.
- State5 and 6 illustrate the correlations of sensorimotor regions with each other.
- FC states obtained by RBM are highly modular and representative of the patterns in dFCN.

Occurrence, the ratio of the number of times a particular state occurs to W, is calculated for each state resulting from an RBM with a fixed *nHid*. As the variance decreases, dFCNs are more likely to be uniformly distributed among the resulting

decay rate (L1-parameter). No significant change in the sparsity of the weights is observed after the weight decay rate 0.075.

|--|

		D		NT
С.	С.		L.	

- 96:245–260, 2014.
- 24:663–676, 2014.
- AN: auditory SMN: somatomotor SCN: subcortical VN: visual CCN: cognitive control DMN: default mode BiN: bilateral limbice

MICHIGAN STATE UNIVERSITY®

WORK

• This research can be extended by considering multiple layers to improve the accuracy of the states.

• Neurological diseases can be diagnosed by comparing the FC states and state transitions of patient and healthy populations.

ICES

[1] R.D. Hjelmb, V.D. Calhoun, R. Salakhutdinovc, and et al. Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. Neuroimage,

[2] E.A. Allen, E. Damaraju, S.M. Plis, E.B. Erhardt, T. Eichele, and V.D. Calhoun. Tracking whole-brain connectivity dynamics in the resting state. *Cerebral Cortex* (New York, NY),

