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Causal LTI Systems

Discrete Linear Time-Invariant (LTI) Systems

A causal LTI systems is an operator S : `2→ `2 mapping input sequences
x = {x[n]}n∈Z onto output sequences y = {y[n]}n∈Z according to

y[n] =
(
Sx
)
[n] =

∞∑
k=0

f [k]x[n− k] , n ∈ Z .

The sequence {f [k]}∞k=0 is said to be the impulse response of S.

The Z-transform of f is given by

f (z) =
(
Zf
)
(z) =

∞∑
k=0

f [k] zk , z ∈ D = {z ∈ C : |z| ≤ 1} .

The transfer function of S is then given by f (eiω), ω ∈ [−π, π).

� S is causal ⇔ f (z) is analytic in z ∈ D ⇔ f ∈ H(D)
� S is stable ⇔ ‖f‖∞ = maxω∈[−π,π)

∣∣f (eiω)∣∣ <∞ ⇔ f ∈ L∞(T)

We consider spaces B ⊂ H∞(D) of stable causal LTI systems.

Design of LTI Systems � Motivation

The design of LTI systems is often based on optimization techniques.

They derive the transfer function f of the system based on certain optimality
criteria (optimal �ltering, pre-whitening, etc.).

� The optimal f has often a very complicated structure without any closed
form analytic representation.

� The optimal f is often only given by its values on a certain discrete sampling
set Z =

{
eiωm : m = 1, . . . ,M

}
.

Goal/Approach: Approximate the optimal transfer functions f by simpler stable

systems f̃ which are known analytically.

Approximation by Basis Expansion

A natural and common approach is to represent f ∈ B in a basis {ϕn}∞n=0 of B
f =

∑∞
n=0 cn(f )ϕn with coe�cient sequence {cn(f )}∞n=0 ⊂ C .

Approximations f̃N are obtained by restricting the sum to its �rst N ∈ N terms:

f̃N = PNf =
∑N−1

n=0 cn(f )ϕn , N = 1, 2, 3, . . .

Since ϕ is a basis for B, one has

limN→∞
∥∥f − f̃N∥∥B = 0 for all f ∈ B .

Problem
Given �nitely many samples

{
f (eiωm)

}M
m=1

of a transfer function f ∈ B. Find a
procedure to determine approximate coe�cients, i.e. �nd a mapping

AM :
{
f (eiωm) : m = 1, . . . ,M

}
7→

{
cN,n(f ) : n = 0, . . . , N(M)− 1

}
(1)

such that

limN→∞
∥∥f −∑N−1

n=0 cN,n(f )ϕn
∥∥
B = 0 for all f ∈ B .

Banach Spaces with Energy Constraint

Let A(D) be the disk algebra of all f ∈ H∞(D) which are continuous in D.
On A(D), we de�ne for every β ≥ 0 the seminorm

‖f‖β =
(∑∞

n=1 n (1 + log n)β
∣∣f [n]∣∣2)1/2

with the Fourier coe�cients f [n] = 1
2π

∫ π
−π f (e

iω) e−inω dω.

Therewith, we de�ne a scale of Banach spaces

Bα,β =
{
f ∈ A(D) : ‖f‖β < +∞

}
, β ≥ 0 ,

equipped with the norm ‖f‖Bβ = max
(
‖f‖∞ , ‖f‖β

)
.

Properties

� Bβ2 ⊂ Bβ1 ⊂ B0 ⊂ A(D) for all β2 > β1 > 0.

� ‖f‖0 corresponds to the (Dirichlet) energy of f ⇒ Spaces of �nite energy.

� Parameter β characterize the smoothness (or energy concentration) of f .

Lemma: For every β ≥ 0 the set ψ = {ψn(z) = zn}∞n=0 is a basis (the Fourier
basis) of Bβ with coe�cient functionals

cn(f ) =
1
2π

∫ π
−π f (e

iω)ψn(eiω) dω = f [n] . (2)

I. Approximation by Numerical Integration

Apply numerical integration methods to evaluate approximations cN,n(f ) of
the coe�cients (2) based on given samples {f (zN,k)} of f .
Use the approximated coe�cients cN,n(f ) instead of the unknown true
values cn(f ) and determine the approximations

f̃N = QNf =
∑N−1

n=0 cN,n(f )ψn , N ∈ N . (3)

Question: Can we �nd an approximation procedure (1) such that

limN→∞ ‖f − QNf‖Bβ = 0 for all f ∈ Bβ .

Example � Integration by Riemann Sums

Approximate the integral in (2) using the rectangular formula of the Riemann sum
bases on M = 2N equidistant samples of f on T, i.e.

cn(f ) ≈ cN,n(f ) =
1
M

∑M
m=1 f (zN,m)ψn(zN,m) (4)

based on the sampling set ZN =
{
zN,m = ei

2π
M (m−1)}M

m=1
⊂ T.

Other methods: di�erent quadrature formulas and/or other sampling sets.

Requirements on Integration Method

Two natural assumptions on the integration methods:

(i) To every approximation degree N ∈ N and there exists an M(N) ∈ N and a
sampling set ZN = {zN,1, . . . , zN,M(N)} ⊂ T such that the functionals
cN,n(f ) are uniquely determined by the values of f on ZN .

(ii) The approximation operators QN de�ned by (3) satis�es

limN→∞ ‖QNψn − ψn‖∞ = 0 for all n = 0, 1, 2, . . . .

No Convergent Method on Bβ with 0 ≤ β ≤ 1

Theorem: Let 0 ≤ β ≤ 1 be arbitrary and let ψ = {ψn}∞n=0 be the Fourier
basis of Bβ. Let {QN}∞N=1 be the sequence (3) of operators associated with ψ
and which satis�es Conditions (i) and (ii), then

limN→∞ ‖QN‖Bβ→Bβ = +∞ .

Corollary: Let 0 ≤ β ≤ 1 be arbitrary and let {QN}N∈N be as in the previous
theorem. Then there exists a residual subset R ⊂ Bβ such that

lim supN→∞ ‖QNf‖∞ = +∞ for all f ∈ R .

Convergent Methods on Bβ with β > 1

Theorem: Let β > 1 be arbitrary and let {QN}∞N=1 be the sequence (3) of
approximation operators with coe�cients cN,n(f ) calculated by (4) then

limN→∞ ‖QNf − f‖Bβ = 0 for all f ∈ Bβ .

II. Computational Bases

De�nition: Let B ⊂ C(T) be a Banach space of continuous functions on T,
and let ϕ = {ϕn}∞n=0 be a basis for B. We call ϕ a computational basis if the
corresponding coe�cient functionals {cn(f )} of ϕ have the following property:

� To every n = 0, 1, 2, . . . there exists an µ(n) ∈ N and distinct numbers
zn,1, . . . , zn,µ ∈ T such that cn(f ) does only depend on the values f (zk,n),
1 ≤ k ≤ µ(n) for every f ∈ B.

So the nth coe�cient cn(f ) can be determined exactly from only �nitely
many values

{
f (zn,1), . . . , f (zn,µ(n))

}
of f , for all f ∈ B.

If a computable basis is known then limN→∞ ‖QNf − f‖B = 0 for all f ∈ B.
Example: Spline basis for C(T).

No Computable Basis on Bβ with 0 ≤ β ≤ 1

Theorem: The spaces Bβ with 0 ≤ β ≤ 1 possess no computational basis.

Discussion and Remarks

The same results hold for the space of all f ∈ A(D) which posses a
uniformly converging power series.

Similar results for Hilbert transform approximations ⇒ Causality!

We gave a precise characterization of subspaces of A(D) with �nite energy
on which basis expansions are practically feasible.

We derived a general axiomatic theory showing that all sampling based
methods fail on these spaces.
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