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Banach Spaces with Energy Constraint

Discrete Linear Time-Invariant (LTI) Systems o Let A(DD) be the disk algebra of all f € H>(D) which are continuous in D,

@ On A(D), we define for every 8 > 0 the seminorm

. o\ 1/2
115 = (o2 (1 +logn)’| fIn]]”)
with the Fourier coefficients fn] = 5= [ f(e¥)e ™™ dw.
@ Therewith, we define a scale of Banach spaces

Bus={f € AD) : |Ifll; < +o0} .

equipped with the norm || f|| 5, = max ({|fllo, 1 f1l5)-
Properties

> 852 C 851 C By C A(D) for all 85 > By > 0.
> || f1|, corresponds to the (Dirichlet) energy of f = Spaces of finite energy.

o A causal LTI systems is an operator S : £ — ¢ mapping input sequences
x = {z|n]},., onto output sequences y = {y|n|}, ., according to

yln] = (Sx)[n] =) flklaz[n -k, nez.

he sequence {f[k]},—, is said to be the impulse response of S. 3> 0

he Z-transform of f is given by
f(z)=(2f)(z) =) flK]z", zeD={zeC:lz|<1}.
k=0

@ The transfer function of S is then given by f(e¥), w € [—m, 7).

> Siscausal & f(z)is analyticin z € D & fe HD)
> Sisstable & [|f]l =max,elra |f(e¥)] <0 & fe L¥(T)

> Parameter [ characterize the smoothness (or energy concentration) of f.

Lemma: For every 5 > 0 the set ¢ = {¥,,(2) = 2"}, —, is a basis (the Fourier
basis) of B with coefficient functionals

en(f) = 57 J 2, F(e¥) () dw = f[n] . (2)

We consider spaces B C H*°(ID) of stable causal LTI systems.

Design of LTI Systems — Motivation

he design of LTI systems is often based on optimization techniques.

hey derive the transfer function f of the system based on certain optimality
criteria (optimal filtering, pre-whitening, etc.).

@ Apply numerical integration methods to evaluate approximations cy ,,( f) of
the coefficients (2) based on given samples { f(zny %)} of f.

> The optimal f has often a very complicated structure without any closed
form analytic representation.

@ Use the approximated coefficients cy ,,(f) instead of the unknown true
values ¢, (f) and determine the approximations

fv=Qunf=00enalf)n, NEeN. (3)

Question: Can we find an approximation procedure (1) such that
imy oo |/ = Qnfllg, =0  forall f e Bg.

> The optimal f is often only given by its values on a certain discrete sampling
set 2 = {ei""m:mzl,...,M}.

Goal /Approach: Approximate the optimal transfer functions f by simpler stable

systems fwhich are known analytically.

Example — Integration by Riemann Sums

Approximation by Basis Expansion

Approximate the integral in (2) using the rectangular formula of the Riemann sum
bases on M = 2N equidistant samples of f on T, i.e.

cn(f) m ennlf) = 2 ey Fenm) Ynl2nm) (4)
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based on the sampling set Zy = {ZN,m = e M(m—l)}i\f:l C T.

A natural and common approach is to represent f € B in a basis {¢,}, —, of B

f= Z;iofn(f) “n

Approximations fy are obtained by restricting the sum to its first N € N terms:

with coefficient sequence {c,(f)} —, C C.

r < N-1 _
fv=Pnf =200 calf)n, N=123,... @ Other methods: different quadrature formulas and/or other sampling sets.
Since ¢ is a basis for B, one has
limy oo ||f = fallp=0  forall feB. Requirements on Integration Method

Problem | y
Given finitely many samples {f(el“’m)}m:1 of a transfer function f € B. Find a

procedure to determine approximate coefficients, i.e. find a mapping

Ay o {f@):m=1,.... M} = {enu(f):n=0,...,NM)—1} (1)
such that

Im o0 Hf — ZT]LV:_Ol cNnl(f) S%HB =0

Two natural assumptions on the integration methods:
(i) To every approximation degree N € N and there exists an M(N) € N and a

sampling set Zx = {zn,1,-- -, 2y} C T such that the functionals
cy.n(f) are uniquely determined by the values of f on Zy.

(ii) The approximation operators Qy defined by (3) satisfies

forall fe€B. my oo |Qun — Pl =0 forallm=0,1,2,... .
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No Convergent Method on 53 with 0 < 5 <1

Theorem: Let 0 < 8 < 1 be arbitrary and let ¢ = {¢,} _, be the Fourier

basis of Bs. Let {Qn}r_; be the sequence (3) of operators associated with 1)
and which satisfies Conditions (i) and (ii), then

limy o |Qu|| 5,8, = +00 -

Corollary: Let 0 < 8 <1 be arbitrary and let {Qx} ey be as in the previous
theorem. Then there exists a residual subset R C Bg such that

limsupy_,o [|QNfll, =400  forall feR.

Convergent Methods on B3 with 5 > 1

Theorem: Let 8 > 1 be arbitrary and let {Qy}A_, be the sequence (3) of
approximation operators with coefficients cy ,,(f) calculated by (4) then

imy oo [|QNS — fllg, =0 forall feBg.

Il. Computational Bases

Definition: Let B C C(T) be a Banach space of continuous functions on T,

and let ¢ = {¢,}, —, be a basis for B. We call ¢ a computational basis if the

corresponding coefficient functionals {c,(f)} of ¢ have the following property:

> Toeveryn=20,1,2,...
Znly - -2 € T such that c,(f) does only depend on the values f(zj ),
1 <k < pu(n) for every f € B.

there exists an p(n) € N and distinct numbers

@ So the nth coefficient ¢, (f) can be determined exactly from only finitely

many values {f(znjl), o f(Zn,,u(n))} of f, forall feB.
o If a computable basis is known then limy_, ||Qnf — fllz=0forall f € B.

@ Example: Spline basis for C(T).

No Computable Basis on Bz with 0 < 5 <1

Theorem: The spaces Bg with 0 < 5 < 1 possess no computational basis.

Discussion and Remarks

@ The same results hold for the space of all f € A(ID) which posses a
uniformly converging power series.

@ Similar results for Hilbert transtform approximations = Causality!
@ We gave a precise characterization of subspaces of A(ID) with finite energy
on which basis expansions are practically feasible.

@ We derived a general axiomatic theory showing that all sampling based
methods fail on these spaces.
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