

DEREVERBERATION AND BEAMFORMING IN FAR-FIELD SPEAKER RECOGNITION

Introduction

This work deals with far-field speaker recognition. We demonstrate and investigate:

- the degree of degradation of the state-of-the-art i-vector based speaker recognition system on reverberant data,
- PLDA re-training,
- preprocessing techniques: dereverberation, beamforming,
- development of SR system of competitive accuracy in far-field settings

Experimental setup

Test dataset

For this work, a subset of data released for NIST Year 2010 Speaker Recognition evaluations (SRE) was retransmitted.

duration of recordings: 3 min and 8 min

	Number of recordings	Number of speakers
Female	459	150
Male	473	150

Floor plan of the room in which the retransmission took place. Coordinates are in meters and lower left corner is the origin. The loudspeaker-microphone distance rises steadily for microphones 1...6 to study deterioration as a function of distance. Microphones 7...12 form a large microphone array to explore beamforming.

Speaker recognition system

- Mel-frequency cepstral coefficients: 60-dimensional (including Δ and $\Delta\Delta$)
- Cepstral Mean and Variance Normalization: 3s window
- GMM-UBM: 2048 components
- i-vectors: 200-dimensional (projected by LDA from 600-dimensional space)
- Probabilistic Linear Discriminant Analysis

Ladislav Mošner, Pavel Matějka, Ondřej Novotný and Jan "Honza" Černocký Brno University of Technology, Speech@FIT and IT41 Center of Excellence, Czechia

Experiments

All the results of experiments are expressed in equal error rates (EER). For convenience, we show only female test data results. The baseline accuracy – 2.52% EER – was obtained on clean test data before the retransmission.

Adverse effects of distance on speaker recognition

The test data captured by individual microphones were evaluated with the original system. *line*: inter-microphone distance of 1 m (microphones 1...6); array: large microphone array (microphones 7...12); auxiliary: remaining sensors (microphones 13, 14). • distance-accuracy correlation does not hold for the array • the result of a directivity pattern and local acoustic conditions

References

[1] J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small-room acoustics," Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943–950, 1979. [2] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang, "Speech Dereverberation Based on Variance-Normalized Delayed Linear Prediction," IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 7, pp. 1717–1731, 2010. [3] X. Anguera, C. Wooters, and J. Hernando, "Acoustic Beamforming for Speaker Diarization of Meetings," IEEE Transactions on Audio, Speech and Language Processing, vol. 15, no. 7, pp. 2011–2022, 2007. [4] J. Heymann, L. Drude, and R. Haeb-Umbach, "Neural network based spectral mask estimation for acoustic beamforming," in 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). 2016, pp. 196–200, IEEE.

Beamforming

• microphones 7...12 DS: delay-and-sum • GCC-PHAT for TDOA estimation diffuse noise field assumption

• FW_GEV_rever: simulated reverberant training data

2.52% baseline accuracy,

clean test data

Microphone array experiments

- MVDR: minimum variance distortionless response
- Beamformlt: weighted delay-and-sum + additional processing [3]
- FW_GEV: generalized eigenvalue beamformer [4]
- feed-forward NN for PSD masks estimation

		Original	Simulated
		system	data adapt.
		2.52	2.52
nt	Best	9.42	5.64
	Worst	16.46	8.91
		14.15	9.01
		13.62	7.44
lt		9.43	6.08
		10.07	5.56
rever		7.54	4.93

	Original	Simulated	Dereverb.
	system	data adapt.	data adapt.
Best	6.37	5.03	4.09
Worst	11.19	8.28	7.45
Best	3.88	3.67	3.56
Worst	10.17	9.22	7.87
	9.33	6.71	6.18
	9.45	6.50	5.75
lt	8.49	6.84	6.19
	7.36	5.66	5.24
	6.29	4.30	4.50
	6.18	6.08	5.66
	6.18	5.03	4.93
lt	5.03	4.30	4.09
	2.83	2.73	2.62
	2.73	2.83	2.73

Dereverb data adapt.: the same as adapt_simu, an additional appropriate dereverberation technique was applied to the simulated portion of the data

The best results

9.42%

2.62%

the best result we achieved

best-performing microphone from the microphone array