UNSW

SYDNEY

END-TO-END HIERARCHICAL LANGUAGE IDENTIFICATION SYSTEM

Saad Irtza'#,Vidhyasaharan Sethu!, Eliathamby Ambikairajah.2,Haizhou Li°
1 The School of Electrical Engineering and Telecommunications The University of New South Wales,
Sydney NSW 2052, Australia
2 ATP Laboratory, National ICT Australia (NICTA), Australia, Sydney NSW 2015, Australia
SNational University of Singapore, Singapore

l DATA I

1- Introduction

2- Hierarchical Tree Structure (NIST 2015 Databhase)

v The deep learning approaches have been successfully employed to

v’ State of art LID system:

develop single level end-to-end LID systems.

*» Treats all languages equally (in-set or out of set)

» May require data from additional languages that are not in the set of target

languages in order to model OOS language model

v' Hierarchical LID framework:
¢ Divides the classification problem into simpler set of tasks
*» Allows target languages to be identified in final layer

** Requires significant effort to choose best features and classifier at each node

v' Contributions

* Proposes an end-to-end HLID system training to jointly optimize the feature

extraction and classification

** Demonstrates its in-built ability to enables an OOS model, without using any \

additional OOS language training data

3- Optimizing Combined Prediction Loss

Approach-l
v' Proposed to combine the prediction loss of each language group’s specific network from all nodes in a path from

root to leaf of the sub-tree
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Approach-Il: Proposed to combine the prediction layer of language group specific network
v In HLID system, language posterior of each target language is the chain product of the conditional probabilities of a

N
P(Lelx;) = P(£:|C™, x;) HP(C(”)iC(”‘l),xi)
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target language or group, given its parent group, on the path from root to leaf node as:

n denotes the number of level In sub-tree 05
¢ (™ denotes the language group at nt" level

v" The conditional probability of each target language/group is computed from the prediction layer of each language

group’s specific network as:
P(C™[c™ D, x;) = (™ V(G (x5 65); 0 D), x))

- Gy is the feature extraction network

G and 0"~V are the language group specific network and

__associated parameters

v" Network is trained by optimizing each tree objective function computed as:
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4- Experimental Setup

Features:

v  Spectrogram of 128 frequency bins
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End-to-end Network:

v Two CNN layers with filter size of 9x9

and 3x5
v LSTM layer of 256 memory blocks

v Four fully connected DNN layers of 100
dimensions each

v Activation function: Rectified linear unit

v Momentum optimizer

regularization
Out of Set Languages Test Data:

v 17 different languages from previous
NIST LRE datasets (2007 and 2011)

Closed Set Detection Results on

with drop out

v" Proposed two novel approaches to train end-to-end
hierarchical structure for language identification

v The proposed hierarchical structure

* Jointly optimize the nodes that are under same

sub-tree In the hierarchical structure

feature

classification process at each node

** Develop the OOS language model without using
any additional non-target languages data

o Automate

the

v" Future Work:

o Automate

NIST 2015 Database (as per NIST 2015 LRE Evaluation)
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