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1- Introduction

✓ The deep learning approaches have been successfully employed to

develop single level end-to-end LID systems.

✓ State of art LID system:
❖ Treats all languages equally (in-set or out of set)

❖ May require data from additional languages that are not in the set of target

languages in order to model OOS language model

✓ Hierarchical LID framework:
❖ Divides the classification problem into simpler set of tasks

❖ Allows target languages to be identified in final layer

❖ Requires significant effort to choose best features and classifier at each node

✓ Contributions
❖ Proposes an end-to-end HLID system training to jointly optimize the feature

extraction and classification

❖ Demonstrates its in-built ability to enables an OOS model, without using any

additional OOS language training data

4- Experimental Setup
Features:

✓ Spectrogram of 128 frequency bins

(30msec with 50% overlap)
End-to-end Network:

✓ Two CNN layers with filter size of 9x9

and 3x5

✓ LSTM layer of 256 memory blocks

✓ Four fully connected DNN layers of 100

dimensions each

✓ Activation function: Rectified linear unit

✓Momentum optimizer with drop out

regularization
Out of Set Languages Test Data:

✓ 17 different languages from previous

NIST LRE datasets (2007 and 2011)

5- Results

6- Conclusion and Future Work

✓ Proposed two novel approaches to train end-to-end

hierarchical structure for language identification

✓ The proposed hierarchical structure

❖ Jointly optimize the nodes that are under same

sub-tree in the hierarchical structure

❖ Automate the feature extraction and

classification process at each node

❖ Develop the OOS language model without using

any additional non-target languages data

✓ Future Work:

❖ Automate the language clustering with

hierarchical structure training
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3- Optimizing Combined Prediction Loss

Approach-I

✓ Proposed to combine the prediction loss of each language group’s specific network from all nodes in a path from

root to leaf of the sub-tree

Approach-II: Proposed to combine the prediction layer of language group specific network

✓ In HLID system, language posterior of each target language is the chain product of the conditional probabilities of a

target language or group, given its parent group, on the path from root to leaf node as:

𝑃 𝓁𝑡 𝑥𝑖 = 𝑃 𝓁𝑡 𝐶
(𝑁), 𝑥𝑖 ෑ

𝑛=2

𝑁

𝑃 𝐶(𝑛) 𝐶(𝑛−1), 𝑥𝑖

✓ The conditional probability of each target language/group is computed from the prediction layer of each language

group’s specific network as:

𝑃 𝐶(𝑛) 𝐶(𝑛−1), 𝑥𝑖 = (𝐺(𝑛−1) 𝐺𝑓 𝑥𝑖; 𝜃𝑓 ; 𝜃(𝑛−1) , 𝑥𝑖)

✓ Network is trained by optimizing each tree objective function computed as:

𝐸𝑇𝑗(𝜃𝑓 , 𝜃𝑇𝑗) = min
𝜃𝑓,𝜃𝑇𝑗

1

𝐼
σ𝑖=1
𝐼 ℒ𝑇𝑗

𝑖 (𝑃 𝓵 𝑥𝑖 ; 𝜃𝑓, 𝜃𝑇𝑗)
Here, ℒ𝑇𝑗

𝑖 (. ) is the loss function of sub-tree 𝑇𝑗 for the ith speech 

sample (𝑥𝑖)

𝑛 denotes the number of level in sub-tree 𝑇𝑗
𝐶(𝑛) denotes the language group at nth level 

Gf is the feature extraction network

𝐺 𝑎𝑛𝑑 𝜃(𝑛−1) are the language group specific network and 

associated parameters
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The posterior probability of AI (path highlighted red), given 

an input utterance 𝑥𝑖, is expanded using node subscript 

notation as

𝑃 𝐴𝐼 𝑥𝑖 = 𝑃 𝐴𝐼 𝐶31, 𝑥𝑖 𝑃 𝐶31 𝐶21, 𝑥𝑖 𝑃 𝐶21 𝐶11, 𝑥𝑖


