On the SNR Variability in Noisy Compressed Sensing

Anastasia Lavrenko^{*}, <u>Florian Römer[‡], Giovanni Del Galdo^{* †} and Reiner Thomä^{* †}</u> *Institute for Information Technology, TU Ilmenau, Ilmenau [†]Fraunhofer Institute for Integrated Circuits IIS, Ilmenau, Germany [‡]Fraunhofer Institute for Nondestructive Testing IZFP, Ilmenau, Germany

Introduction	OSNR Spread Analysis
• Compressed Sensing (CS) aims at solving y = Ax + n = d + n, where (1) • y is a (known) $M \times 1$ vector of measurements • x is an (unknown) $N \times 1$ K-sparse input signal • A is an $M \times N$ the sensing matrix with $M < N$ $d \in \mathbb{R}^{M}$ $A \in \mathbb{R}^{M \times N}$ $x \in \mathbb{R}^{N}$ $d = Ax, S(x) = K \ll N$ $S(x) \stackrel{f}{=} \{i \in [1, N] : x_i \neq 0\}$	 For any given sensing matrix A and input X = {x_{i1},, x_{iK}} one could evaluate the spread by computing a conditional frequency distribution h_A(η_O X) repeating this procedure for different X, i.e., combinations of signal magnitudes averaging the results to obtain h_A(η_O) Time consuming - requires combinatorial search!
n represents additive noise	Conditional frequency distribution $h_{\mathbf{A}}(\eta_{O} \mathcal{X})$ Instead: when the elements of A are drawn
Problem The application of the sensing matrix affects the signal power and, in the presence of noise, the effective SNR	Analytic approximation $f_{A}(\eta_{O} \mathcal{X})$ from some distribution $f(\alpha)$ and N is large \blacktriangleright model $a_{m,n}$ as i.i.d. random variables \blacktriangleright approximate $h_{A}(\eta_{O} \mathcal{X})$ by the (analytic) distribution $f_{A}(\eta_{O} \mathcal{X})$ and /or
Output signal power	astribution $T_{A}(\eta_{O} \mathcal{X})$ and/or compute mean and variance of (n_{O})

Sucput Signal power

$$\|\boldsymbol{d}\|_{2}^{2} = \|\boldsymbol{A}\boldsymbol{x}\|_{2}^{2} = \sum_{m=1}^{M} \left(\sum_{i \in \mathcal{S}(\boldsymbol{x})} a_{m,i} x_{i}\right)^{2}$$
(2)

depends on the entries of **A** corresponding to the support of the input **x**

Noise power

In the CS setting, two types of additive noise can occur

- signal or input noise $n_{\rm s} \rightarrow$ acts on the input signal x
- measurement noise $n_{
 m m}
 ightarrow$ acts on the measured signal d

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n} = \mathbf{A}(\mathbf{x} + \mathbf{n}_{s}) + \mathbf{n}_{m} \rightarrow \mathbf{n} = \mathbf{A}\mathbf{n}_{s} + \mathbf{n}_{m}$$
 (3)

Assuming the elements of $n_{\rm s}$ and $n_{\rm m}$ to be i.i.d. zero-mean normal variables with variance $\sigma_{\rm s}^2$ and $\sigma_{\rm m}^2$, respectively,

$$\mathbb{E}\{\|\boldsymbol{n}\|_{2}^{2}\} = \operatorname{trace}\{\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}\}\sigma_{\mathrm{s}}^{2} + M\sigma_{\mathrm{m}}^{2} = M\sigma_{0}^{2}$$
(4)

• $\sigma_0^2 = \frac{1}{M} \operatorname{trace} \{ \mathbf{A} \mathbf{A}^{\mathrm{T}} \} \sigma_{\mathrm{s}}^2 + \sigma_{\mathrm{m}}^2$

Output vs recovered SNR

 \blacktriangleright compute mean and variance of $(\eta_{()})$ evaluate the OSNR spread by computing

$$\mathsf{CoV}^*: \ \mathbf{c}_{v}(\eta_{O}) = \sqrt{\frac{\operatorname{var}\{\eta_{O}\}}{(\mathbb{E}\{\eta_{O}\})^2}}$$

Generic approach

• When $a_{m,n}$ are independently drawn from some probability distribution $f(\alpha)$

$$\eta_{\mathrm{O}} = \frac{1}{M\sigma_0^2} \sum_{m=1}^{M} \left(\sum_{\substack{i \in \mathcal{S}(\mathbf{x}) \\ d_m}} a_{m,i} x_i \right)^2 = \frac{1}{M\sigma_0^2} \sum_{m=1}^{M} d_m^2$$

is a random variable whose distribution is defined by that of $\sum_{m=1}^{M} d_m^2$ • Given large enough N (each row of A is a large enough sample of $f(\alpha)$) we

• approximate $h_{A}(\eta_{O}|\mathcal{X})$ assuming that $a_{m,n} \sim f(\alpha)$

• compute mean $\mathbb{E}\{\eta_O\} = \mathbb{E}_{\mathcal{X}}\{\mathbb{E}_{\mathcal{A}}\{\eta_O|\mathcal{X}\}\}$ and variance $\operatorname{var}\{\eta_O\} = \mathbb{E}\{\eta_O^2\} - \mathbb{E}^2\{\eta_O\}$

Examples: Gaussian, Bernoulli and Rademacher A

► Suppose
$$a_{m,n} \sim \mathcal{N}(0, 1/M)$$
, then
► $d_m \sim \mathcal{N}(0, \frac{\|\mathbf{x}\|_2^2}{M})$ and $\frac{M}{\|\mathbf{x}\|_2^2} \sum_{m=1}^M d_m^2 \sim \chi_M^2$
 $\rightarrow f_A(\eta_O | \mathcal{X}) = \Gamma\left(\frac{M}{2}, \frac{2\|\mathbf{x}\|_2^2}{M^2 \sigma_0^2}\right)$

---- Empirical frequency distribution $h_{\mathbf{A}}(\eta_{\mathrm{O}}|\mathcal{X})$ — Analytic approximation $f_{\mathbf{A}}(\eta_{\mathrm{O}}|\mathcal{X})$ $N = 700 \longrightarrow N = 400$

Output SNR (OSNR)

$$\eta_{\rm O} \stackrel{\Delta}{=} \frac{\|\boldsymbol{A}\boldsymbol{x}\|_2^2}{\mathbb{E}\{\|\boldsymbol{n}\|_2^2\}} = \frac{\|\boldsymbol{A}\boldsymbol{x}\|_2^2}{\mathbb{E}\{\|\boldsymbol{A}\boldsymbol{n}_{\rm s} + \boldsymbol{n}_{\rm m}\|_2^2\}} = \frac{1}{M\sigma_0^2} \sum_{m=1}^M \left(\sum_{i \in \mathcal{S}(\boldsymbol{x})} a_{m,i} x_i\right)^2 \quad (5)$$

 \blacktriangleright expresses the ratio between the total output signal power to the total noise power \rightarrow **defines** the reconstruction **performance**

OSNR is a function of the non-zeros x_i and the support $\mathcal{S}(\mathbf{x})$ via the corresponding values $a_{m,i}$ of the sensing matrix **A**

Difference with Nyquist-rate setting

The effective output SNR might vary depending on the support of x \rightarrow potentially non-uniform system performance!

Recovered SNR (RSNR)

$$\eta_{\mathrm{R}} \stackrel{\Delta}{=} \frac{\|\boldsymbol{x}\|_{2}^{2}}{\mathbb{E}\{\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|_{2}^{2}\}},$$
(6)

accounts for the ratio of the signal power to the power of the residual noise present after reconstruction \rightarrow provides a measure of the reconstruction performance

RSNR for an oracle-assisted recovery evaluates best-case performance \rightarrow a **benchmark** for any practical recovery method

► We can also compute

• Variance of $\eta_{\rm O}$ $\operatorname{var} \{\eta_{\mathrm{O}}\} = \left(1 + \frac{2}{M}\right)\vartheta^2 - \vartheta^2 = \frac{2}{M}\vartheta^2.$

$$M/N = 0.2, \, \sigma_{
m s}^2/\sigma_{
m m}^2 = 1$$

 $\eta_{\rm O}$

• CoV is given by $c_v(\eta_0) = \sqrt{2\vartheta^2/M\vartheta^2} = \sqrt{2/M}$ - depends only on M

Exact derivations for equal signal magnitudes, i.e., $\forall i \in S(\mathbf{x}) x_i = c$

Bernoulli sensing matrix

$$M_{0}(\eta_{0}) = \sqrt{rac{1}{M} rac{1+2p(K-1)((2K-3)p+3)}{K((K-1)p+1)^{2}p}(1-p)}$$

Rademacher sensing matrix

$$c_{
m v}(\eta_{
m O})=\sqrt{rac{1}{M}rac{2(K-1)}{K}}$$

Numerical validation

RMSE: numerical vs analytic CoV

CoV vs choice of \mathcal{X}

$$\eta_{\mathrm{R}} = \frac{\|\boldsymbol{x}\|_{2}^{2}}{\mathbb{E}\left\{\|\boldsymbol{A}_{\mathcal{S}(\boldsymbol{x})}^{\dagger}\boldsymbol{y} - \boldsymbol{x}\|_{2}^{2}\right\}} = \frac{\|\boldsymbol{x}\|_{2}^{2}}{\mathbb{E}\left\{\|\boldsymbol{A}_{\mathcal{S}(\boldsymbol{x})}^{\dagger}\boldsymbol{n}\|_{2}^{2}\right\}}$$

- denotes the matrix pseudo-inverse
- $A_{\mathcal{S}(\mathbf{x})}$ contains the columns of **A** indexed by $\mathcal{S}(\mathbf{x})$
- ► The ratio of RSNR to OSNR

$$\left(\frac{1-\delta}{1+\delta}\right)\frac{M}{K} \le \frac{\eta_{\rm R}}{\eta_{\rm O}} \le \left(\frac{1+\delta}{1-\delta}\right)\frac{M}{K}, \ \delta \in (0,1) \text{ is the RIP constant}$$
(8)

The variation of the OSNR over the signal support results in a corresponding variation of the bounds on RSNR

► Gaussian, Bernoulli and Rademacher **A** • Equal input entries: $\forall i \in \mathcal{S}(\mathbf{x}) x_i = c$

- Gaussian: CoV independent of K, \mathcal{X}
- Bernoulli and Rad.: behave differently

The SNR spread in CS can be significant!

ICASSP 2018: Signal Processing Letters

Technische Universität Ilmenau Institute for Information Technology Contact: anastasia.lavrenko@tu-ilmenau.de

(7)

