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Introduction

I Compressed Sensing (CS) aims at solving

y = Ax + n = d + n, where (1)

I y is a (known) M × 1 vector of measurements
I x is an (unknown) N × 1 K -sparse input signal
I A is an M × N the sensing matrix with M < N
I n represents additive noise

d ∈ RM

=

A ∈ RM×N

·

x ∈ RN

d = Ax, |S(x)| = K � N

S(x) 4
= {i ∈ [1, N ] : xi 6= 0}

Problem
The application of the sensing matrix affects the signal power and, in

the presence of noise, the effective SNR

I Output signal power

‖d‖22 = ‖Ax‖22 =
M∑

m=1

∑
i∈S(x)

am,ixi

2

(2)

depends on the entries of A corresponding to the support of the input x
I Noise power
In the CS setting, two types of additive noise can occur
I signal or input noise ns → acts on the input signal x
I measurement noise nm → acts on the measured signal d

y = Ax + n = A(x + ns) + nm→ n = Ans + nm (3)

Assuming the elements of ns and nm to be i.i.d. zero-mean normal variables
with variance σ2

s and σ2
m, respectively,

E{‖n‖22} = trace{AAT}σ2
s + Mσ2

m = Mσ2
0 (4)

I σ2
0 = 1

Mtrace{AAT}σ2
s + σ2

m

Output vs recovered SNR

I Output SNR (OSNR)

ηO
∆= ‖Ax‖22
E{‖n‖22}

= ‖Ax‖22
E{‖Ans + nm‖22}

= 1
Mσ2

0

M∑
m=1

∑
i∈S(x)

am,ixi

2

(5)

I expresses the ratio between the total output signal power to the total noise power →
defines the reconstruction performance

OSNR is a function of the non-zeros xi and the support S(x) via the
corresponding values am,i of the sensing matrix A

Difference with Nyquist-rate setting
The effective output SNR might vary depending on the support of x

→ potentially non-uniform system performance!

I Recovered SNR (RSNR)
ηR

∆= ‖x‖22
E{‖x̂ − x‖22}

, (6)

I accounts for the ratio of the signal power to the power of the residual noise present after
reconstruction → provides a measure of the reconstruction performance

RSNR for an oracle-assisted recovery evaluates best-case performance → a
benchmark for any practical recovery method

ηR = ‖x‖22
E
{
‖A†S(x)y − x‖22

} = ‖x‖22
E
{
‖A†S(x)n‖22

} (7)

I (·)† denotes the matrix pseudo-inverse
I AS(x) contains the columns of A indexed by S(x)

I The ratio of RSNR to OSNR(
1− δ
1 + δ

)
M
K ≤

ηR

ηO
≤
(
1 + δ

1− δ

)
M
K , δ ∈ (0, 1) is the RIP constant (8)

The variation of the OSNR over the signal support results
in a corresponding variation of the bounds on RSNR

OSNR Spread Analysis

I For any given sensing matrix A and input X = {xi1, . . . , xiK} one could
evaluate the spread by
I computing a conditional frequency distribution hA(ηO|X )
I repeating this procedure for different X , i.e., combinations of signal magnitudes
I averaging the results to obtain hA(ηO)

Time consuming - requires combinatorial search!

ηO

Conditional frequency distribution hA(ηO|X )

Analytic approximation fA(ηO|X )

spread

*CoV: coefficient of variation

Instead: when the elements of A are drawn
from some distribution f (α) and N is large

I model am,n as i.i.d. random variables
I approximate hA(ηO|X ) by the (analytic)
distribution fA(ηO|X ) and/or

I compute mean and variance of (ηO)
I evaluate the OSNR spread by computing

CoV∗ : cv(ηO) =

√
var {ηO}

(E {ηO})2

Generic approach

I When am,n are independently drawn from some probability distribution f (α)

ηO = 1
Mσ2

0

M∑
m=1

( ∑
i∈S(x)

am,ixi︸ ︷︷ ︸
dm

)2
= 1

Mσ2
0

M∑
m=1

d 2
m

is a random variable whose distribution is defined by that of
∑M

m=1 d 2
m

I Given large enough N (each row of A is a large enough sample of f (α)) we
I approximate hA(ηO|X ) assuming that am,n ∼ f (α)
I compute mean E{ηO} = EX{EA{ηO|X}} and variance var{ηO} = E{η2O} − E2{ηO}

Examples: Gaussian, Bernoulli and Rademacher A

Gaussian sensing matrix
I Suppose am,n ∼ N (0, 1/M), then

I dm ∼ N (0, ‖x‖
2
2

M ) and M
‖x‖22

M∑
m=1

d 2
m ∼ χ2

M

→ fA(ηO|X ) = Γ
(

M
2 ,

2‖x‖22
M2σ2

0

)
I We can also compute

I Mean of ηO

E {ηO} = EX
{
‖x‖22
Mσ2

0

}
= E{‖x‖2}

Mσ2
0

= ϑ

I Variance of ηO

var {ηO} =
(
1 + 2

M

)
ϑ2 − ϑ2 = 2

Mϑ2.

N = 700
N = 400

N = 100

ηO

M/N = 0.2, σ2
s /σ

2
m = 1

Empirical frequency distribution hA(ηO|X )

Analytic approximation fA(ηO|X )

I CoV is given by cv(ηO) =
√

2ϑ2/Mϑ2 =
√

2/M - depends only on M

Exact derivations for equal signal magnitudes, i.e., ∀i ∈ S(x) xi = c

Bernoulli sensing matrix

cv(ηO) =

√√√√ 1
M

1 + 2p
(
K − 1

)(
(2K − 3)p + 3

)
K
(

(K − 1)p + 1
)2p (1− p)

Rademacher sensing matrix

cv(ηO) =
√

1
M

2(K − 1)
K

Numerical validation

RMSE: numerical vs analytic CoV
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I Gaussian, Bernoulli and Rademacher A
I Equal input entries: ∀i ∈ S(x) xi = c

CoV vs choice of X

2 4 6 8 10
0

0.5

1

1.5

Sparsity level K

E
m
p
ir
ic
a
l
C
o
V

ce v
·√

M

Type of A Type of X
Gaussian Equal

Bernoulli Gaussian

Rademacher Uniform

I Gaussian: CoV independent of K , X
I Bernoulli and Rad.: behave differently

The SNR spread in CS can be significant!
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