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» For any given sensing matrix A and input X = {x;, ..., x; } one could

» Compressed Sensing (CS) aims at solving g e I A € R it luate th d b
evaluate the spread by

» computing a conditional frequency distribution ha(70|X)
» repeating this procedure for different X', i.e., combinations of signal magnitudes
» averaging the results to obtain ha(n0)

y=Ax+n=d+ n, where (1) E

d= Az, |S(x)|]=K <N

» y is a (known) M x 1 vector of S(x) = {i € [1,N] : 2 # 0}

» X is an (unknown) N x 1 K-sparse signal Ti i i binatorial h
CAcan Mox N the v with M < N ime consuming - requires combinatorial search!
» N represents additive noise
D\DConditional frequency distribution h 4 (no|X) Instead: When the Of A are
Problem Analytic approximation fa(nol) from some f(a) and N is large
The application of the sensing matrix affects the signal power and, in AN » model ap, , as i.i.d. random variables
the presence of noise, the effective SNR T » approximate ha(no|X') by the (analytic)
| distribution fa(7o|X) and/or
» Output signal power Js IL » compute mean and variance of (1)0)
7 .
M ; —= S read = » evaluate the OSNR spread by computing
2 2 - >
ldl3=ax =3~ [ 3 anse @ . . it (0]
m=1\ieS(x) *CoV: coefficient of variation CoV™ 1 c(no) = (E {no})?

the entries of A corresponding to the of the input x

» Noise power

n the CS setti o t £ 2 dditi . » When a, , are independently drawn from some probability distribution f(a)
n the setting, two types of additive noise can occur

M M
. . . . . 1 2 1

» signal or input noise ny, — acts on the input signal x _ ( 3 -X-) _ d?
» measurement noise n,, — acts on the measured signal d 10 MO(% Z Z e M(Tg Z "

m=1  jeS(x) m=1

d
y=Ax+n=A(x+n,)+n, - n=An,+ n, (3) | T
is a whose distribution is defined by that of 2%21 d?

Assuming the elements of n, and n,, to be i.i.d. zero-mean normal variables
with variance 02 and 02, respectively,

m’
‘L{

» 0§ = ptrace{ AA'}o? + o2,

» Given large enough N (each row of A is a large enough sample of f(a)) we

> approximate ha(no|X) assuming that a,, , ~ f(«a)
» compute mean E{no} = Ex{Ea{no|X}} and variance var{no} = E{ng} — E*{no}

n||5} = trace{AA"}o? + Mo? = Mo (4)

Gaussian sensing matrix -.--- Empirical frequency distribution h 4 (no|X)

> Suppose dm,n ™ N(07 1/M)1 then —— Analytic approximation fa(no|X)
M
- d ~ N(0,152) and 23" a2 ~ X,
» Output SNR (OSNR) m—1 x|
2 M 2| x||5
2 2 M — fA(770|X):r< : )
Mo A |Ax||3 _ |Ax||3 _ 1 Z Z 1 x (5) 2" M?cf
i{l|nll5}  E{||An,+ n,l|5} Mo3 e » We can also compute
2 2 0 m=1 ieS(x)
» Mean of ng
» expresses the ratio between the total output signal power to the total noise power — Ix|2 E{||x||?}
the reconstruction E{no} = Ex { W 2} — Vo2 = v
90 90
OSNR is a the non-zeros x; and S(x) via the ~ Variance of 70 0
corresponding values a,, ; of the sensing matrix A var {no} = <1 n %) 92 _ 92 _ %ﬁ; M/N =02, 02 /02, =1
Difference with Nyquist-rate setting » CoV is given by c,(10) = \/202/M32 = \/2/M - depends only on M

he effective output SNR might vary depending on the support of x

— potentially non-uniform system performance! N . . . .
P Y Y P Exact derivations for equal signal magnitudes, i.e., Vi € S(x)x; = ¢

» Recovered SNR (RSNR) ; Bernoulli sensing matrix Rademacher sensing matrix
a3 -
{ 1% — x[]2} (o) 11+2p(K—1)((2K—3)p+3)(1_p) e (10) — 12(K —1)
\Y o M B 2 ANAS
» accounts for the ratio of the signal power to the power of the residual noise present after \ K((K L)p + 1) P MK
reconstruction — provides a measure of the reconstruction performance
RSNR for an recovery evaluates best-case performance — a
for any practical recovery method RMSE: numerical vs analytic CoV CoV vs choice of X
; ; . 107 1.5;
HxH2 HxH2 —~ . Type of A Compr. rate ¥
nR — ] Jr 5 — ] Jr 5 (7) § ] —e— Gaussian —— M/N = 0.3 E
1Ay = %3} B 1AL ml3) T T T v
Q @)
» (-)" denotes the matrix pseudo-inverse = O
» As(x) contains the columns of A indexed by S(x) = £ 05 Type of A Type of X
% .% —e— Gaussian — Equal
- &3 Bernoulli - Gaussian
» The ratio of RSNR to OSNR = | L el e
11—\ M NR 1+0\ M 300 700 1100 1500 1900 ’ 1+ 6 s 1
) K < =< 5 ) K 0 € (0,1) is the RIP constant  (8) Input dimension N Sparsity level K
0 » Gaussian, Bernoulli and Rademacher A » Gaussian: CoV independent of K, X
. . > ' ies \j — Bernoulli and Rad.: behave differentl
The variation of the OSNR over the signal support results Equal input entries: Vi € 5(x) x; = ¢ ’ )
in a corresponding variation of the bounds on RSNR The SNR spread in CS can be significant!
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