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Abstract
We consider the problem of evaluating outage probability (OP)
values of generalized selection combining diversity receivers
over fading channels. This is equivalent to computing the cumu-
lative distribution function (CDF) of the sum of order statistics.
Generally, closed-form expressions of the CDF of order statis-
tics are unavailable for many practical distributions. Moreover,
the naive Monte Carlo method requires a substantial computa-
tional effort when the probability of interest is sufficiently small.
In the region of small OP values, we propose instead an efficient,
yet universal, importance sampling (IS) estimator that yields a
reliable estimate of the CDF with small computing cost. The
main feature of the proposed IS estimator is that it has bounded
relative error under a certain assumption that is shown to hold
for most of the challenging distributions. Moreover, an improve-
ment of this estimator is proposed for the Pareto and the Weibull
cases. Finally, the efficiency of the proposed estimators are in-
vestigated through various numerical experiments.

Motivation

•Order statistics play an important role in the performance anal-
ysis of wireless communication systems over fading channels.
– The signal-to-noise-ratio (SNR) is expressed as the partial

sum of ordered channel gains in a Generalized selection
combining (GSC) model combined with maximum ratio com-
bining (MRC) diversity technique

– Sums of order statistics is encountered when GSC is com-
bined with equal gain combining (EGC) diversity technique.

Objective: Evaluate the CDF of the sum of ordered random
variables (RVs) .
•Closed-form expressions of the CDF of partial sums of order

RVs exist only for the exponential and Gamma RVs.
•Out of reach for many challenging distributions and still consti-

tute open problems: Log-normal and Weibull variates.
•Naive Monte Carlo (MC) method is a good alternative to esti-

mate the CDF of partial sums of ordered RVs.
• It requires a substantial amount of samples to yield an accu-

rate estimate of the left-tail of the CDF.

Solution IS yields a very precise estimate of the CDF with small
computing cost.

Problem Setting

•Consider a sequence of i.i.d RVsX1, X2, · · · , XN with common
probability density function (PDF) f (·).
• Propose efficient MC methods to evaluate the quantity

` = P

 L∑
k=1

X(k) ≤ γth

 , (1)

X(k) is the kth order statistic such that X(1) ≥ X(2) ≥ · · · ≥
X(N), and L is an integer satisfying 1 ≤ L ≤ N .
• For small values of `, IS techniques can deliver a reliable esti-

mate with fewer number of runs compared to naive MC.
• Let ˆ̀ be an estimator of ` with E[ ˆ̀] = `, we say that ˆ̀ has

bounded relative error when

lim sup
γth→0

var
[
ˆ̀
]

`2
<∞. (2)

→ the number of samples needed to achieve a given accuracy
remains bounded regardless of how small ` is.

Importance Sampling Estimator

• Let X = (X1, · · · , XN )′ and S = {x = (x1, · · · , xN )′ :∑L
k=1 x

(k) ≤ γth}.
•Consider another set S1 that includes S with the assumption

that P (X ∈ S1) is known in closed form.
• The probability ` is re-written as

` = P (X ∈ S) = P (X ∈ S1)P (X ∈ S|X ∈ S1) . (3)

• ` is the product of a known approximate term `1 = P (X ∈ S1)
and a non-rare event probability P (X ∈ S|X ∈ S1) that can be
efficiently estimated through naive MC simulations.
• Alternatively, we write ` as

` = Eg
[
`11(X∈S)

]
, Eg

[
ˆ̀
IS

]
, (4)

where with g(·) is the PDF under which X is distributed accord-
ing to its original PDF truncated over S1,

• ˆ̀IS is an importance sampling estimator with biased PDF g(·).
• The variance of ˆ̀IS is given by

varg

[
ˆ̀
IS

]
= `1`− `2. (5)

• The closer `1 to `, the smaller the variance of ˆ̀IS is, and hence
the more efficient is the estimator ˆ̀

IS.

Universal IS Estimator

• The simplest choice of the set S1 is

S1 = {x = (x1, · · · , xN )′ : x(1) ≤ γth}. (6)

• The probability `1 is therefore given by

`1 = (P (X1 ≤ γth))
N (7)

Proposition 1 Assume P (X1 < γth) /P (X1 ≤ γth/L) = O(1)
as γth→ 0, we have

lim sup
γth→0

`1
`
<∞ (8)

Hence, the bounded relative error property holds.

• The assumption holds for many challenging distributions: the
Generalized Gamma (which includes the Gamma and the
Weibull distributions), and the κ− µ distributions.
•Despite its general scope of applicability, the efficiency can be

further improved if we settle for a particular distribution.

Pareto Case

• The PDF f (·) of Xi, i = 1, · · · , N , is given as

f (x) = α (1 + x)−(1+α) , x ≥ 0, (9)

with α > 0.
• Yi = α log (1 +Xi), i = 1, · · · , N , are exponentially distribution

with mean 1.

` = P

 L∑
k=1

exp
(
Y (k)/α

)
≤ γth + L

 . (10)

• Let λi > 0, i = 1, 2, · · · , L, such that
∑L
i=1 λi = 1, S1 is selected

as

S1 =
{
y :

L∑
k=1

λky
(k) ≤ γ1 = α(log(γth + L) +

L∑
k=1

λk log(λk))
}
.

(11)

and

`1 = P

 N∑
i=1

βiZi ≤ γ1

 , (12)

where Z1, · · · , ZN are i.i.d exponential RVs with mean 1 and

βi =


L∑
j=1

λj/(N − i + 1) i = 1 = 1, · · · , N − L + 1,

N+1−i∑
j=1

λj/(N − i + 1) i = N − L + 2, · · · , N.
(13)

• A closed-form expression of `1 is

`1 = 1− (1, 0, · · · , 0) exp (γ1A) (1, 1, · · · , 1)′, (14)

with exp (γ1A) being the matrix exponential of γ1A and

A =


−1/β1 1/β1 0 · · · 0

0 −1/β2 1/β2 · · · 0
... ... . . . . . . ...
0 · · · 0 −1/βN−1 1/βN−1
0 · · · 0 0 −1/βN

 (15)

Proposition 2 Let λk = 1/L for all k ∈ {1, · · · , L}. Then, we
have

lim sup
γth→0

`1
`
<∞. (16)

Thus, the bounded relative error property holds.

Weibull Case

• The PDF of X1, · · · , XN is given as

f (x) =
α

η

(
x

η

)α−1
exp

(
−
(
x

η

)α)
, x > 0, (17)

where η is the scale parameter, α is the shape parameter
which is assumed 0 < α < 1.

• Yi = (Xi/η)
α, i = 1, · · · , N , are i.i.d exponential with mean 1

` = P

 L∑
k=1

(
Y (k)

)1/α
≤ γth/η

 . (18)

• Let λi > 0, i = 1, · · · , L, such that
∑L
i=1 λi = 1, S1 is selected

as

S1 =

y :

L∑
k=1

λ1−αk Y (k) ≤ (γth/η)
α

 . (19)

and

`1 = P

 N∑
i=1

νiZi ≤ (γth/η)
α

 , (20)

with

νi =


L∑
j=1

λ1−αj /(N − i + 1) i = 1 = 1, · · · , N − L + 1,

N+1−i∑
j=1

λ1−αj /(N − i + 1) i = N − L + 2, · · · , N.

(21)

Proposition 3 For 0 < α < 1 and arbitrary values of λk,
k = 1, · · · , L, we have

lim sup
γth→0

`1
`
<∞. (22)

Hence, the bounded relative error property holds.

Numerical Results

The relative error of an estimator ˆ̀ is defined as

RE(ˆ̀) =

√
var
[
ˆ̀
]

`
√
M

. (23)

Table 1: CDF of the sum of order statistics for Pareto Case with
N = 8, L = 4, α = 1 and M = 5× 105.

IS estimator Universal IS estimator
γth ˆ̀

IS RE(ˆ̀IS)% ˆ̀
IS,u RE(ˆ̀IS,u)%

1.5 2.21× 10−4 6.06× 10−2 2.19× 10−4 1.23

1 2.06× 10−5 5.18× 10−2 2.11× 10−5 1.92

0.5 2.13× 10−7 3.85× 10−2 2.09× 10−7 3.82

0.1 1.29× 10−12 1.79× 10−2 1.29× 10−12 8.51

Table 2: CDF of the sum of order statistics for Weibull Case with
N = 8, L = 4, α = 0.5, η = 1 and M = 5× 105.

IS estimator Universal IS estimator
γth ˆ̀

IS RE(ˆ̀IS)% ˆ̀
IS,u RE(ˆ̀IS,u)%

1 0.0029 9.96× 10−2 0.0029 0.4

0.5 3.37× 10−4 0.1 3.37× 10−4 0.49

0.1 1.27× 10−6 0.11 1.27× 10−6 0.66

0.05 9.79× 10−8 0.11 9.85× 10−8 0.71

0.01 2.06× 10−10 0.11 2.06× 10−10 0.8

0.005 1.38× 10−11 0.11 1.39× 10−11 0.81

Table 3: DF of the sum of order statistics for Weibull Case with
N = 8, L = 2, α = 0.5, η = 1 and M = 5× 105.

IS estimator Universal IS estimator
γth ˆ̀

IS RE(ˆ̀IS)% ˆ̀
IS,u RE(ˆ̀IS,u)%

0.355 3.38× 10−4 4.37× 10−2 3.37× 10−4 0.28

0.07 1.28× 10−6 4.41× 10−2 1.28× 10−6 0.34

0.0069 2.03× 10−10 4.42× 10−2 2.04× 10−10 0.37

0.0035 1.44× 10−11 4.42× 10−2 1.45× 10−11 0.38
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