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CONTRIBUTION:

GLOBALLY OPTIMAL ECUPQ DESIGN

e A globally optimal entropy-constrained unrestricted polar quantizer design algorithm is proposed for finite rates.

e Best practical performance for a bivariate memoryless Gaussian source at small rates known to date.

e The problem of rate allocation between the magnitude and phase quantizers is handled efliciently.

e Journal version is available at [1].

PROBLEM FORMULATION

Representation point
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A UPQ quantization bin in the polar coordinates

R(m,s):{fr’eﬁ\rm 1 <1<, (s—1)25 <9<s]2f}.

e N : Number of magnitude levels of the UPQ;

or = (ri,79, -+ ,7apr—1): The vector of thresholds of the

magnitude quantizer;

e P,,: Number of phase regions of the phase quantizer cor-
responding to cell [r—1,7m), and P = (Py, Py, -+, Pyr).

The reconstruction for quantizer bin R(m, s):

Om.s = (2s —1)m/P,,, Ap = sinc (le)
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Distortion (per Sample pair):
= Jo r2g(r)dr — 3,y A2, [ g(r)dr.

Entropy (bits/sample palr) :
H=3 [ g(r)dr(—log, [

m—1
Optimization Problem
miny . p D+ AH,
subject tor; e A,1 <t < M —1, A > 0.

g(r)dr +logy Py,).

"m—1

= {ay,a9, -+ ,ak} is a finite set from which the magnitude
thresholds of the UPQ) are selected.

The set of solutions to the above problem, when A\
varies over (0,00), is the set of UPQs such that the
corresponding pair (H, D) is on the lower boundary of
the convex hull of the set of all possible pairs (H, D).
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GRAPH MODEL G = (V, E, w)

e For fixed cell |a,,a,), the optimal number of phase regions
1S
e rg(rydr 2

e Using the above relation, the cost becomes the sum
of costs of individual magnitude cells.

Mapping between the magnitude partition and a path

in a Weighted Directed Acyclic Graph G = (V, E, w):
e Thresholds set A < Vertex set V ={0,1,2,--- K +1} ;

e A magnitude cell |a,,a,) < A directed edge from u to v in
E={(u,v)eV?|0<u<v<K+1};

e Encoder partition {[0,71), - - ,|ram—1,00)} < A path from
source node 0 to destination node K + 1;

o Cost d(|lay,ay)) + AH(lay,a,)) for cell |a,,a,) < Weight of
each edge (u,v):

w(u,v) =

Ay 2 X
/av g(r)dr | —sinc? ! fa“ rg(r)dr o
A, P[Tlu CLU) fa,av

(@ ,ay)
+ Al .
" g(r)dr ) ARG >dr)

e Cost of the quantizer D + A\H < Weight of the path;

e The optimization problem is equivalent to finding
the Minimum Weight Path in G.
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[lustration of the graph G (top) for K = 3 and a path in the
graph (bottom). Nodes are depicted with circles and edges
with arcs. The path shown on the bottom corresponds to the
magnitude quantizer with bins [0, as) and |asz, 00).
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NUMBER OF PHASE REGIONS: COMPUTATION

e The optimal number of phase regions P[Zu a,) Can
efficiently with the following lemma.

¢ Lemma For each (u,
smallest P € {1,3,---

v) € E, the value P o) equals the

, Prae b [1] satisfying

<

be found
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SOLUTION ALGORITHM: O(K?log P,,u.)

Proposed Solution Procedure

1. Evaluate cumulative probabilities and first mo-

A _ h(P+1) — h(P)
g(P+1)—g(P)

T(y,a,)?In2 —

S rg(r)dr

where x(a.,, a,) = Ty
a

(r)dr ’

For each pair (a,,a,), 0 <u<ov < K41,
can be obtained using binary search.

EXPERIMENTAL RESULTS
e 2D Gaussian vector (X1, Xs), X1 ~N(0,1), Xa ~ N (0, 1);

e Rate Distortion Function: Dg(R) = 2 x 27,

weight w(u, v) —

ments during the preprocessing step — O(K) time;

2. For each pair (a,,a,), 0 <u < v < K+1, compute
the number of phase regions

*
[aua@v)

and the edge

O(K?log P,,..) operations in all;

3. Solve the MWP problem in G — O(K*) time.

P*
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Performance comparison with the entropy-coded UPQ [2] and D¢g(R)

. . Improvement Gap to rate
Rate | Distortion (dB) ove]i 2| (dB) distortlijon function
1.000 0.883 0.465 0.883
1.585 —0.5950 0.216 1.211
2.000 —1.681 0.290 1.328
2.500 —3.295 0.354 1.391
3.139 —4.987 0.716 1.450
3.008 —6.079 0.643 1.473
3.895 —7.224 0.609 1.492
4.512 —9.058 0.755 1.515
4.990 —10.486 0.723 1.527

Performance comparison with ASY, PASY in [3] and Dg(R)
ASY: Asymptotical ECUPQ performance derived in [3]
PASY: Practical ECUPQ based on the asymptotic point density functions

Overall Time Complexity: O(K*log P,,...) -

ECUPQ at R = 2.0 bits/sample pair

Rate | Distortion (dB) | Distortion of ASY (dB) | Distortion of PASY (dB) O\E?%XE%D?EE) Jis tgri?oflofflitciion
4.100 —7.832 —7.800 —7.213 0.619 1.501
4.512 —9.058 —9.041 —8.481 0.077 1.515
4.990 —10.486 —10.480 —9.973 0.513 1.527
5.996 —13.500 —13.507 —13.144 0.350 1.539
6.995 —16.506 —16.514 —16.287 0.219 1.541
8.000 —19.532 —19.539 —19.408 0.124 1.540
9.000 —22.547 —22.549 —22.481 0.0606 1.538
9.990 —29.028 —29.2930 —25.493 0.035 1.536
10.992 —28.544 —28.546 —28.528 0.016 1.536
11.991 —31.9550 —31.953 —31.542 0.003 1.536

The proposed algorithm

e always outperforms the design of (2|, with gains larger than 0.6 dB when R > 3.

e outperforms PASY for all rates examined, with improvements higher than 0.513 dB when R < 4.99.

e performs extremely close to ASY when R > 4.99, and is slightly better at lower rates.

e achieves the gap to the rate distortion function very close to the gap (1.529 dB) predicted by the high-resolution quantization
theory for the case of single encoder-decoder scalar quantizer.



