High Accuracy Acoustic Estimation of Multiple Targets

Mohammed H. AlSharif¹, Mohamed Saad¹, Mohamed Siala², Hatem Boujemaa², Tarig Ballal¹, Tareq Y. Al-Naffouri¹

¹ King Abdullah University of Science and Technology (KAUST), Saudi Arabia ² Higher School of Communication of Tunis (SUP'COM), University of Carthage, Tunisia

Introduction

- Precise estimation of multiple targets is required in many of nowadays technologies.
- Many types of signals have been used for multiple targets estimation:

- The update of the parameter vector is: $\theta^{(k+1)} = \theta^{(k)} + p_k$.
- For multiple targets, the Expectation-Maximization (EM) algorithm is used [1] to solve the following optimization problem:

$$\min_{\theta_m} \|q - \sum_{m=1}^{M} s(\theta_m)\|^2 \tag{4}$$

where q is the observed data vector which represents the cross-correlation.

 The EM algorithm defines *M* unobserved data vectors as *h_m* = *s*(θ_m) + *n_m*, where *n_m* is an AWGN sequence. The relation between the observed and the unobserved data is: *q* = ∑^M_{m=1} *h_m*.
 The expectation of the unobserved data *h_m* can be computed as [1] ∩(k) = 1 ^M_m (k)

(a) Infrared (b) Radar TOA (c) Ultrasound

Time of arrival (TOA) estimation using cross-correlation is simple but its resolution is dictated by the available bandwidth:

$$R = \frac{2v_s}{BW} \tag{1}$$

where v_s is the wave propagation speed in the medium and BW is the bandwidth of the system.

- The challenge is to resolve the TOAs of the reflected signals from the cross-correlation.
- The deconvolution method provides high resolution estimation TOAs of the reflected signals at high SNR, but the accuracy significantly degrades under low SNR.

- $\hat{h}_{m}^{(k)} = s(\theta_{m}^{(k)}) + \frac{1}{M}(q \sum_{l=1}^{M} s(\theta_{l}^{(k)}))$ (5)
- The M-step iterates the parameter vector $\theta_m^{(k)}$ by minimizing: $\theta_m^{(k+1)} = \arg_{\theta_m} \min \|\hat{h}_m^{(k)} - s(\theta_m)\|^2$
- The initial guess of $\beta_m^{(0)}$, and $f_{cm}^{(0)}$ depends on the available hardware bandwidth and center frequency and the initial phase $\phi_m^{(0)}$ is set to zero.

(6)

- Determine if there are overlapping peaks based on the width of each peak and the inverse-square law (amplitude $\propto \frac{1}{\text{distance}^2}$).
- The initial guess for the overlapping targets is the same as the initial guess of the mth target except that the TOAs are perturbed.
- The deconvolution method provides high resolution:

$$Z(f) = \frac{Q(f)}{S(f)} \implies z(t) = \mathsf{IFFT}(Z(f)) = \sum_{k=1}^{M} c_k \delta(t - \tau_k)$$
(7)

where Q(f) is the FFT of the estimated GEM of the cross-correlation, z(t) is the high resolution output of the deconvolution method, c_k is the amplitude of the k^{th} target signal, and $\delta(t)$ is the Dirac delta function.

Denoising the cross-correlation vector is required before applying the deconvolution method.

Multiple TOAs Estimation

- Transmitting an m-sequence and cross-correlating Rx with Tx gives the system impulse response (SIR): r_{yx}(I) = h(I) * r_{xx}(I)
 The Gaussian echo model (GEM) is a good model for SIR [1]: s(θ; t(nT_s)) = αe^{-β(t(nT_s)-τ)²} cos(2πf_c(t(nT_s) τ) + φ), where θ = [β, τ, f_c, φ, α], β is a BW factor, τ is the TOA, f_c is the center
- frequency, ϕ is the phase and α is the amplitude of the target signal.
- The SIR in the presence of multiple targets can be modeled as:
 - $M \qquad M \qquad M \qquad M$

Experimental Setup

(a) Static Ranging

(b) Movement Tracking

Results

									T						
									Proposed Algorithm			GEM estimation			
	Proposed Algorithm,			GEM estimation			CC	Rx-Tx	RMSE	σ	% error <	RMSE	σ	% error<	
Exps	RMSE	σ	Μ	RMSE	σ	Μ	M		(mm)	(mm)	5 mm	(mm)	(mm)	5 mm	
	(mm)	(mm)		(mm)	(mm)			1-1	2.30	1.48	99.40	1.07	0.97	100	
Exp 1	2.11	2.10	3	2.86	2.26	3	3	2-1	3.11	3.10	88.80	3.60	3.01	84.43	
Exp 2	5.89	5.81	3	10.78	5.91	3	2	3-1	2.86	2.38	96.80	2.26	2.20	95.41	
Exp 3	3.52	3.48	3	7.32	4.54	3	2	4-1	2.35	2.35	97.40	3.28	2.97	90.82	
Exp 4	5.11	4.13	3	8.67	3.15	3	1	1-2	3.98	2.53	76.65	3.02	2.51	93.41	
Exp 5	3.39	2.43	4	3.46	3.34	4	2	2-2	8.30	6.35	27.54	9.03	6.15	27.74	
Exp 6	3.99	3.08	3	8.52	5.61	3	2	3-2	7.21	5.70	50.9	6.21	5.75	42.32	
Table: Estimated multiple								4-2	6.02	4.56	66.67	11.13	10.78	57.68	
taraa	te RN		σ and					Ta	Table: Tx1 and Tx2 tracking results						

 $q(t(nT_s)) = \sum_{m=1}^{\infty} h(t(nT_s))_m = \sum_{m=1}^{\infty} s(\theta_m; t(nT_s)) + n(t(nT_s)), \quad (2)$ where *M* is the number of targets, $h(t(nT_s))$ is the impulse response for a single target, and $n(t(nT_s))$ is the noise coming from the discrepancy between the system impulse response and the GEM.

For a single target, we need to solve:

$$\begin{split} \min_{\theta} \|h(t(nT_s)) - s(\theta, t(nT_s))\|^2 \quad (3) \\ &\blacktriangleright \text{ Using Levenberg-Marquardt (LM) algorithm [2], the step vector:} \\ &p_k = \begin{cases} -(H_k^T H_k)^{-1} H_k^T r_k, & \text{if } \|p_k^{GN}\| \leq \Delta_k, \\ -(H_k^T H_k + \lambda \text{diag}(H_k^T H_k))^{-1} H_k^T r_k, & \text{if } \|p_k^{GN}\| > \Delta_k. \end{cases} \end{split}$$

where H_k is the gradient vector of the model with respect to the parameter vector θ , r_k is the residual function, Δ_k is the trust region radius, λ is the damping factor, and $p_k^{GN} = -(H_k^T H_k)^{-1} H_k^T r_k$.

References

- 1 Ramazan Demirli and Jafar Saniie, "Model-based estimation of ultrasonic echoes. part i: Analysis and algorithms," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 48, no. 3, pp. 787-802, 2001.
- 2 Stephen J Wright and Jorge Nocedal, "Numerical optimization," Springer Science, vol. 35, no. 67-68, pp. 7, 1999.