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Motivation

I Energy harvesting (EH) nodes are able
to collect energy from the environment

I EH holds the promise of
self-sustainability and perpetual
operation

I Complete non-causal information is
required for optimal power allocation

I What can be done if only causal
information is available?
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System Model

I N0 harvests energy and uses it
exclusively to transmit data to K
receivers

I Constant time interval τ between
two consecutive EH instants

I Only causal information available at
the transmitter N0

I Constant transmit powers during
each time interval

I Each receiver treats the
non-intended received data as
interference
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Problem Formulation

Goal: Power allocation policy to maximize the throughput having only causal information
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Reinforcement Learning (RL):
The key idea

I The transmitter learns the power
allocation policy considering only its
causal information

I The policy is evaluated using the
Q-function

I The optimal Q-function leads to the
optimal policy

The Q-function is the expected
throughput to be achieved by following a
policy given a state and a transmit power
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Reinforcement Learning (RL):
The State-Action-Reward-State-Action (SARSA)
algorithm

State 1 State 2

Sum
Throughput 1

State 3

transmit 

powers 1
transmit 

powers 2

Sum
Throughput 2

I SARSA builds an estimate of the Q-function based on the states that are visited and
the obtained throughput

I The Q-function is updated in every iteration

I The transmit power values are selected according to ε-greedy policy
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Linear Function Approximation

I Only a limited number of Q-values can
be stored

I The Q-function is approximated as a
linear combination of feature functions

Q(state, power) = fTw

I The features f correspond to natural
attributes of the EH problem

I Different feature functions for each
layer

I The weights w indicate the contribution
of each feature function

Original function

Approximation
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Proposed Two-Layer Approach
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Summary
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Proposed two-layer reinforcement learning solution
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Performance Results:
Received Data Packets vs. Emax/2σ2

I = 1000, Ei ∈ U (0, Emax), K = 3, d = 200 kbits
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Performance Results:
Throughput vs. Number of Time Intervals
Ei ∈ U (0, Emax), Emax/2σ2 = 10dB, K = 3
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Conclusions

I A two-layer reinforcement learning algorithm with linear function approxi-
mation was proposed to solve the power allocation problem in a data dis-
semination scenario.

I Only local causal information available
I No discretization required for the energy, battery level, data buffer level or

channel values

I The proposed feature functions take into account the characteristics of the
EH problem

I Better performance compared to standard learning techniques
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Thank you for your attention!
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