A Two-Layer Reinforcement Learning Solution for Energy Harvesting Data Dissemination Scenarios

TECHNISCHE UNIVERSITÄT DARMSTADT

Andrea Ortiz and Anja Klein Technische Universität Darmstadt, Germany

Tobias Weber Universität Rostock, Germany

This work was funded by the LOEWE Priority Program NICER

2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Motivation

- Energy harvesting (EH) nodes are able to collect energy from the environment
- EH holds the promise of self-sustainability and perpetual operation
- Complete non-causal information is required for optimal power allocation
- What can be done if only causal information is available?

Motivation

- Energy harvesting (EH) nodes are able to collect energy from the environment
- EH holds the promise of self-sustainability and perpetual operation
- Complete non-causal information is required for optimal power allocation
- What can be done if only causal information is available?

Outline

System Model

Problem Formulation

Proposed Two Layer Reinforcement Learning Approach Reinforcement Learning Linear Function Approximation Two-Layer Approach

Performance Results

Conclusions

System Model

- N₀ harvests energy and uses it exclusively to transmit data to K receivers
- Constant time interval *τ* between two consecutive EH instants
- Only causal information available at the transmitter N₀
- Constant transmit powers during each time interval
- Each receiver treats the non-intended received data as interference

Goal: Power allocation policy to maximize the throughput having only causal information

Goal: Power allocation policy to maximize the throughput having only causal information

Goal: Power allocation policy to maximize the throughput having only causal information

Goal: Power allocation policy to maximize the throughput having only causal information

Goal: Power allocation policy to maximize the throughput having only causal information

Goal: Power allocation policy to maximize the throughput having only causal information

Goal: Power allocation policy to maximize the throughput having only causal information

Reinforcement Learning (RL): The key idea

- The transmitter learns the power allocation policy considering only its causal information
- The policy is evaluated using the Q-function
- The optimal Q-function leads to the optimal policy

The Q-function is the expected throughput to be achieved by following a policy given a state and a transmit power

Reinforcement Learning (RL): The State-Action-Reward-State-Action (SARSA) algorithm

TECHNISCHE

 SARSA builds an estimate of the Q-function based on the states that are visited and the obtained throughput

- The Q-function is updated in every iteration
- The transmit power values are selected according to ε-greedy policy

Linear Function Approximation

- Only a limited number of Q-values can be stored
- The Q-function is approximated as a linear combination of feature functions

 $Q(state, power) = \mathbf{f}^T \mathbf{w}$

- The features f correspond to natural attributes of the EH problem
 - Different feature functions for each layer
- The weights w indicate the contribution of each feature function

Proposed Two-Layer Approach

TECHNISCHE UNIVERSITÄT DARMSTADT

RL for power allocation

Selection of the total transmit power for the time interval

Distribution among the data streams to be transmitted

Proposed Two-Layer Approach

Proposed Two-Layer Approach

Summary

Performance Results: Received Data Packets vs. $E_{max}/2\sigma^2$

 $I = 1000, E_i \in U(0, E_{max}), K = 3, d = 200$ kbits

Performance Results: Throughput vs. Number of Time Intervals

 $E_i \in U(0, E_{max}), E_{max}/2\sigma^2 = 10$ dB, K = 3

Conclusions

- A two-layer reinforcement learning algorithm with linear function approximation was proposed to solve the power allocation problem in a data dissemination scenario.
 - Only local causal information available
 - No discretization required for the energy, battery level, data buffer level or channel values
- The proposed feature functions take into account the characteristics of the EH problem
- Better performance compared to standard learning techniques

Conclusions

- A two-layer reinforcement learning algorithm with linear function approximation was proposed to solve the power allocation problem in a data dissemination scenario.
 - Only local causal information available
 - No discretization required for the energy, battery level, data buffer level or channel values
- The proposed feature functions take into account the characteristics of the EH problem
- Better performance compared to standard learning techniques

Thank you for your attention!