COMPRESSED SENSING MASK FEATURE IN TIME-FREQUENCY DOMAIN FOR CIVIL FLIGHT RADAR EMITTER RECOGNITION
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Motivation: Civil Flights Recognition

Challenges:

* Traditional Specific Emitter Identification (SEI) features prone to work
ineffectively and has low physical representation.

* Feature extraction and optimization algorithoms need to be more
simplified and applicable to engineering realization.

* In bad whether, low visibility situation or signals are interfered,there is a
special need for control tower to recognize the coming flights.

 Limited SEI databases.

Innovative Points:

* Applying signal reconstruction approach to feature extraction method.

* Using compressed sensing theory extracts CS-mask from ambiguity
domain.

* Feature optimization methods based on signals and energy are suitable for
engineering realization.

* Create, collect and build 12 big databases for SEI.

Advantages:

Inspired by ambiguity-function representative slice feature, we propose a
compressed sensing mask feature in ambiguity domain which can:

* improves the recognition rate of civil flight radar emitters.

* represents physical characteristics of measured radar signals.

* contains more time varying information.

» alleviates the computational costs and data size.
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Feature selection: a mask of ambiguity function

Method:
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Mathematic Model:

Algorithm:

Ambiguity function is defined as:
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If considering WVD and ambiguity as finite length N points sequences, then
the matrix correlation of them as follows:

= LP(NxN) 'WD(le) (2)

W is 2D Fourier transform matrix. @ is measurement matrix. CS-mask feature

based on AF is defined as:
AMask
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The sparse feature can be obtained according to CS theory, which can be
optimized as:
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N M 1 4 1
S°t°kz_:‘nz_:‘—N-M (7 {Af}-WD) < g‘(éf)eg (5)

Processing Batch

¥

Feature Extraction

Mask or Slice?

H
H.

transfer the radar signal pulses into
ambiguity function

transfer signals from ambiguity to WVD

Setting €

optimize feature using formulas (4)-(5)

Merits of CS-mask

Information Representation:

Masked Ambiguity Function: Containing IF info
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Classification Result

| Ground Radar Base 01 |

Recognition result of Data set 1

* Four databases including two ground
W[ T e ] radar bases and two civil flight bases.

CS-mask owns higher accuracy and
robustness in data sets | and IV.
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Recognition result of Data set 2

CS-mask preforms much more prevalent
and stable in general.

Training rate 10% 20% 30% 40%  50% 60% 70%
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Big Radar Wave Database

Our Lab own a big Radar waveform database, include measured signals from
different kinds of Radar emitter.

Radar Pulse Database

More than 4GB Data and Record Amount in each Subclass

10,000 Records.
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Building Civil Flights Database

Our Lab own a big Radar waveform database, include measured signals from
different kinds of Radar emitter.
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Conclusions

In this paper, a compressed sensing based feature ambiguity function mask is
proposed to serve as a time-frequency feature for emitter recognition. The
sparse CS-mask owns abundant time frequency information for radarprint
feature extraction. This approach has some merits:

 Cover more time varying information of signals

* Avoid high dimension redundancy

e Possess better accuracy in civil flight meteorological radar identification
* own higher physical representation

Appendix

Radar Wave Viewing: TF domain
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