Sparse Recovery Assisted DOA Estimation Utilizing Sparse Bayesian Learning

Objectives and Contributions

This paper proposes a sparse recovery assisted
direction-of-arrival (SR-DOA) estimator.

- The DOA estimation is formulated as a sparse
nonnegative least squares problem.

- The SR-DOA method is able to suppress the
noise but at the expense of a few degrees-of-
freedom, and mitigate the sampling errors by ex-
ploiting its asymptotic distribution.

- 'The spare Bayesian learning with nonnegative
Laplace prior is utilized to yield the DOA estima-
t1om.

- Numerical results show that the proposed SR-
DOA algorithm outperforms the esxiting meth-
ods in terms of the estimation accuracy.

Problem formulation

Consider K uncorrelated narrowband far-field sig-
nals, sip(t), k =1,2,---
sparse array which consists of M omnidirectional
sensors located at [0, dy, ---, dy—1], where d,, rep-
resents the distance between the (m + 1)-th sensor
and the first sensor. Then, the array output vector
x(t) of T snapshots can be expressed as

x(t) = As(t) +n(t), t=1,2,---, T (1)

where s(t) = [s1(t)], s2(t), - -+, sx(t)]' and n(t) de-
note the source signal and additive Gaussian noise,
respectively, A consists of K steering vectors. Note
that the DOA of the k-th source signal is distribut-
ed in the range of (—90°,90). Thus, by invoking all
the possible DOAsS,

high-resolution and sparse representation as

, K, impinging on a linear

x(t) in (1) can be written in a

x(t) = As(t)+n(t), t=1,2,---, T (2)
Where A=la (él) a(f), -+ ,a(fz)] and the set of
= {01,0,, ...,0} gives a sampling grid of all pos-

Slble DOAs, while s(t) = [51(t)], 52(¢), - - , 5 (t)]*
with si(t) being the possible source signal. In gen-
eral, we have K > K. Therefore, 5(t) is a sparse
vector, whose 1-th row is nonzero and equals to the
corresponding row of s(t) in (1). Consequently, the
problem of DOA estimation based on (1) is equiva-
lent to identifying the positions of the nonzero rows

of x(t) in (2).
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sparse nonnegative least squares

(S-NNLS) modeling

To begin with, the sample covariance matrix of x(t)
of (2) can be derived as

R=ARA"+R,+ E (3)

where R, = E[s(t)s(t)"] = diag{o7, -+, 0%} with
o7 = E[s;(t)5:(t)"] being the power received from
the k-th source singal, R,, = diag{o~, o} with
o? being the variance of noise, while E reflects the
error between the covariance matrix of x(t) given in
(2), which is AR, A + R,,, and its sample covari-
ance matrix R of (3). Let us vectorize (3), yielding
an M?-length vector, which is

é V@C{R} =V¢+p+€ (4)
where V2A" @A ¢ = [01, O-%(]Ta )0é vec(R,,)=
o’el ... o%el/]! and fzveC(E). Here, (-)*, ®

and e; denote, respectively, the complex conjugate,
Khatri-Rao product, and the ¢-th column of the i-
dentity matrix Ig. Based on (4), our DOA estima-
tion problem is converted to a problem of identitying
the locations of nonzero elements in ¢.

Then, we convert (4) into its real form, which can
be expressed as

g=Vs+p+¢ (5)
where g = [R{y}",S{y}"]", V=
RV S{VFT, p = [p,0]" and

¢ = [R{ET, SV, Here,0 is an M? x 1
7€ro vector.

Subsequently, the cancellation of the noise resul-
tant components in (5) can be implemented by pre-
multiplying a selection matrix J satisfying Jp = 0

on Y, yielding
uéJ@:J‘AfgnLJé. (6)

Note that, according to the structure of e;, J is con-
structed from the identity matrix Is2 by removing
its {0 X M+ 1,1 x M+2,--- (M—1)x M+M}
TOWS.

Finally, we may whiten Jé through multiplying
u of (6) by G2, yielding an S-NNLS model, i.e.,

@2 G u=Us+v (7)
where W 2 G 2JV and v ~ N (0, Iy

a white (Gaussian noise vector.

M) 1S now

Sparse Bayesian learning with
nonnegative Laplace prior

For the model (7), we have the Gaussian likelihood
function as

p(t|g) ~ N(‘I’Ca Iy ). (8)

In addition, the prior for ¢ can be considered as a

nonnegative Laplace distribution, which is

K \FZ%
psIA) = [ plslp(yNdy = VATe i )
where p(gry) = klllN+(§k|O>’Yk) with Ny (x|0,y1) =

K
2N (sk[0,vx), while p(y|A) =TI p(ylA) with

p(YE|A) = —6_7 the hyperprior Of )\ in (9) is as-
sumed to follow Gamma distribution, i.e.,
bCL
2\) = )\a—l —bA 1

Based on the Bayes rule, we can estimate ¢ by
maximizing its posterior density, namely,

¢ oc argmax N (¢|u, X) = p (11)

where g = S074 and © = (W70 4+ A1) with
A = diag{y}. From (11), we readily find that ¢
is a function of . Hence, once 7y is estimated, the
Maximum-A-Posteriori (MAP) estimate of ¢ can be
determined by (11).

The v and its associated hyperparameter A can
be estimated by maximizing their posterior density,

namely
¥, A = argmax E[logp(s, 7, Al )
x arg max E[logp(¢, 7y, A, &) (12)
YA
oc arg max B[p(a|¢)p(cly)p(|A)p(A)];
Hence, when A is given, 4 can be computed by
1 1 Wi
e = | | 15
TEZ o T\ ;2 TN 3)

where w;. 1s the second-order moment of . Simi-
larly, when 4y is given, A can be computed by

K 14
g_jl Yk / 2+c ( )

From (13) and (14), it is easy to see that 4 and A
are the functions of {¢, A} and 4, respectively. Re-
calling that < is a function of 4, ¢ can be determined
In an 1terative way.

Simulation results

15 T T T
N —E&— NMSBL
—&— SR-DOA

—&— corventional-SBL

|:| 1 | | | | 1 1
20 RE: 16 14 12 10 5 5 -4
SNR (dB)

Figure 1: RMSE versus SNR performance for different DOA
estimators at 1'=200.

—8—MMSEL

—g— SR-D0A, i
—&— corwentional-SBL

_.B_
b =
1 1 | 1 |
50 100 150 200 250 300 350
Mumber of Snapshots

Figure 2: MSE versus number of snapshots for different DOA
estimators at SNR = —18 dB.

- From Fig. 1, We can explicitly observe that our
proposed SR-DOA method outperforms the other
estimators when the SNR is less than -12.5 dB.

- In addition, when the SNR is larger than -12.5
dB, the estimation performance of our proposed SR~
DOA algorithm is slightly worse than that of the
NNSBL algorithm.

- From Fig. 2. as the number of snapshots increases,
the RMSE pertformance of our proposed SR-DOA
and NNSBL algorithms improves, while the perfor-
mance of the conventional SBL algorithm is almost

unchanged.
- Furthermore, from Fig. 2, we can find that the
RMSE of the proposed SR-DOA algorithm is rela-

tively low, as long as the number of snapshots is not
less than 150.
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