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Objectives and Contributions

This paper proposes a sparse recovery assisted
direction-of-arrival (SR-DOA) estimator.
· The DOA estimation is formulated as a sparse
nonnegative least squares problem.
· The SR-DOA method is able to suppress the
noise but at the expense of a few degrees-of-
freedom, and mitigate the sampling errors by ex-
ploiting its asymptotic distribution.
· The spare Bayesian learning with nonnegative
Laplace prior is utilized to yield the DOA estima-
tion.
· Numerical results show that the proposed SR-
DOA algorithm outperforms the esxiting meth-
ods in terms of the estimation accuracy.

Problem formulation

Consider K uncorrelated narrowband far-field sig-
nals, sk(t), k = 1, 2, · · · , K, impinging on a linear
sparse array which consists of M omnidirectional
sensors located at [0, d1, · · · , dM−1], where dm rep-
resents the distance between the (m + 1)-th sensor
and the first sensor. Then, the array output vector
x(t) of T snapshots can be expressed as

x(t) = As(t) + n(t), t = 1, 2, · · · , T (1)
where s(t) = [s1(t)], s2(t), · · · , sK(t)]T and n(t) de-
note the source signal and additive Gaussian noise,
respectively, A consists of K steering vectors. Note
that the DOA of the k-th source signal is distribut-
ed in the range of (−90◦, 90). Thus, by invoking all
the possible DOAs, x(t) in (1) can be written in a
high-resolution and sparse representation as

x(t) = Ās̄(t) + n(t), t = 1, 2, · · · , T (2)
where A = [a(θ̄1),a(θ̄2), · · · ,a(θ̄K̄)] and the set of
θ̄θθ = {θ̄1, θ̄2, . . . , θ̄K̄} gives a sampling grid of all pos-
sible DOAs, while s̄(t) = [s̄1(t)], s̄2(t), · · · , s̄K(t)]T
with s̄k(t) being the possible source signal. In gen-
eral, we have K̄ � K. Therefore, s̄(t) is a sparse
vector, whose i-th row is nonzero and equals to the
corresponding row of s(t) in (1). Consequently, the
problem of DOA estimation based on (1) is equiva-
lent to identifying the positions of the nonzero rows
of x(t) in (2).

sparse nonnegative least squares
(S-NNLS) modeling

To begin with, the sample covariance matrix of x(t)
of (2) can be derived as

R̂ = ĀRsĀH + Rn + E (3)
where Rs = E[̄s(t)s̄(t)H] = diag{σ2

1,· · ·, σ2
K̄
} with

σ2
k = E[̄sk(t)s̄k(t)H] being the power received from

the k-th source singal, Rn = diag{σ2, · · · , σ2} with
σ2 being the variance of noise, while E reflects the
error between the covariance matrix of x(t) given in
(2), which is ĀRsĀH + Rn, and its sample covari-
ance matrix R̂ of (3). Let us vectorize (3), yielding
an M 2-length vector, which is

y
∆= vec{R̂} = V ςςς + ρρρ + ξξξ (4)

where V
∆=Ā

∗�Ā, ςςς ∆= [σ2
1, · · · σ2

K̄
]T , ρρρ∆= vec(Rn)=

[σ2eT1 , · · · , σ2eTM ]T and ξξξ ∆= vec(E). Here, (·)∗, �
and ei denote, respectively, the complex conjugate,
Khatri-Rao product, and the i-th column of the i-
dentity matrix IQ. Based on (4), our DOA estima-
tion problem is converted to a problem of identifying
the locations of nonzero elements in ςςς .

Then, we convert (4) into its real form, which can
be expressed as

ŷ = V̂ ςςς + ρ̂ρρ + ξ̂ξξ (5)
where ŷ = [<{y}T ,={y}T ]T , V̂ =
[<{V }T ,={V }T ]T , ρ̂ρρ = [ρρρT ,0T ]T and
ξ̂ξξ = [<{ξξξ}T ,={ξξξ}T ]T . Here,0 is an M 2 × 1
zero vector.

Subsequently, the cancellation of the noise resul-
tant components in (5) can be implemented by pre-
multiplying a selection matrix J satisfying Jρ̂ρρ = 0
on ŷ, yielding

u
∆= Jŷ = JV̂ ςςς + Jξ̂ξξ. (6)

Note that, according to the structure of ei, J is con-
structed from the identity matrix I2M 2 by removing
its {0×M + 1, 1×M+2, · · · , (M−1)×M+M}
rows.

Finally, we may whiten Jξ̂ξξ through multiplying
u of (6) by G−

1
2, yielding an S-NNLS model, i.e.,
û

∆= G−
1
2u = ΨΨΨςςς + ννν (7)

where ΨΨΨ ∆= G−
1
2JV̂ and ννν ∼ N (0, I2M 2−M) is now

a white Gaussian noise vector.

Sparse Bayesian learning with
nonnegative Laplace prior

For the model (7), we have the Gaussian likelihood
function as

p(û|ςςς) ∼ N (ΨΨΨςςς, I2M 2−M). (8)
In addition, the prior for ςςς can be considered as a
nonnegative Laplace distribution, which is

p(ςςς|λ) =
∫
p(ςςς|γγγ)p(γγγ|λ)dγγγ =

√
λ
K̄
e
−
√
λ

K̄∑
k=1

ςςςk (9)

where p(ςςς|γγγ) =
K̄∏
k=1
N+(ςςςk|0,γγγk) with N+(ςςςk|0,γγγk) =

2N (ςςςk|0, γγγk), while p(γγγ|λ) =
K̄∏
k=1

p(γγγk|λ) with

p(γγγk|λ) = λ
2e
−λγ

2 , the hyperprior of λ in (9) is as-
sumed to follow Gamma distribution, i.e.,

p(λ) = ba

Γ(a)
λa−1e−bλ (10)

Based on the Bayes rule, we can estimate ςςς by
maximizing its posterior density, namely,

ς̂ςς ∝ arg max
ςςς
N+(ςςς|µµµ,ΣΣΣ) = µµµ (11)

where µµµ = ΣΣΣΨΨΨT û and ΣΣΣ =
(
ΨΨΨTΨΨΨ + Λ−1)−1 with

Λ = diag{γγγ}. From (11), we readily find that ς̂ςς
is a function of γγγ. Hence, once γγγ is estimated, the
Maximum-A-Posteriori (MAP) estimate of ς̂ςς can be
determined by (11).

The γγγ and its associated hyperparameter λ can
be estimated by maximizing their posterior density,
namely
γ̂γγ, λ̂ = arg max

γγγ,λ
E[logp(ςςς,γγγ, λ|û)]

∝ arg max
γγγ,λ

E[logp(ςςς,γγγ, λ, û)]

∝ arg max
γγγ,λ

E[p(û|ςςς)p(ςςς|γγγ)p(γγγ|λ)p(λ)].
(12)

Hence, when λ is given, γ̂γγ can be computed by

γ̂γγk = − 1
2λ

+
√√√√ 1

4λ2 + wk
λ

(13)

where wk is the second-order moment of ςςςk. Simi-
larly, when γγγ is given, λ can be computed by

λ̂ = K̄ − 1 + c
K̄∑
k=1

γγγk/2 + c
. (14)

From (13) and (14), it is easy to see that γ̂γγ and λ
are the functions of {ς̂ςς, λ} and γγγ, respectively. Re-
calling that ς̂ςς is a function of γγγ, ς̂ςς can be determined
in an iterative way.

Simulation results

Figure 1: RMSE versus SNR performance for different DOA
estimators at T=200.

Figure 2: MSE versus number of snapshots for different DOA
estimators at SNR = −18 dB.

· From Fig. 1, We can explicitly observe that our
proposed SR-DOA method outperforms the other
estimators when the SNR is less than -12.5 dB.
· In addition, when the SNR is larger than -12.5
dB, the estimation performance of our proposed SR-
DOA algorithm is slightly worse than that of the
NNSBL algorithm.
· From Fig. 2, as the number of snapshots increases,
the RMSE performance of our proposed SR-DOA
and NNSBL algorithms improves, while the perfor-
mance of the conventional SBL algorithm is almost
unchanged.
· Furthermore, from Fig. 2, we can find that the
RMSE of the proposed SR-DOA algorithm is rela-
tively low, as long as the number of snapshots is not
less than 150.
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