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Prior Works

The Price-Reputation Plane

Personalized service in E-commerce

• recommending new products [1,2]

• personalized ranking of sellers offering similar products

• the inter-attribute tradeoff • the inter-item competition

Two Problems

Challenges

Multi-Criteria Decision Making Theory (MCDM) [3]
• explicit utility function

Multi-Attribute Probabilistic Selection (MAPS) [5]
• address the inter-item competition

Indifference Curve Based Method (IC) [6]

• higher accuracy than MAPS

• Normalization: , [0,1]p r

2.   Skyline Items

Utility Function

3. separable 
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• one example is ln (1 ) lnU p r   

• , describing the user’s personalized preference on

the price-reputation tradeoff
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Parameter Estimation

• MRS Estimation based on IC [6]

• Estimation

1. for an item                    , let      be the true MRS at     ( , )i i is p r
ik is

1

i
i

i

r
k

p




  



i i

i i i

k p

k p r
 



For each item                , PRIMA obtains the MRS range [ , ]iik k = ,i i is p r
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Probabilistic Ranking (The Inter-Item Competition)

Define      be the probability for item      to be selected      
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2.  Multi-Item Competition
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Data Collection and Processing

• Types of products: 

Cuisine coffee maker DCC-1200 (~$100 )

iTouch 5th generation (~$200)

Canon EOS 5D Mark II camera (~$2000)
• Price and reputation information from eBay
• For each product, 15 item sets were generated, each with 4~6 

skyline items
• 21 subjects were interviewed

Performance Metrics

• Ranking Quality (     ):                                      ,       is the number 

of items,  and      is the ranking position of the user’s true choice

rq ( ) ( 1)brq N v N   N

bv

• Success Rate: the frequency that PRIMA ranks the user’s true 

choice in the first place

Results

Real user test results of ranking quality

Coffee Maker iTouch Canon Average

PRIMA 76.43% 77.80%

IC 78.57% 76.44%

MAPS

• Both IC [6] and PRIMA give higher ranking quality and success

rate than MAPS [5].

• PRIMA achieves comparable or even better performance than IC

[6]. Note that PRIMA is also much simpler than IC [6] and

mathematically tractable.

A larger value indicates a 

higher preference

3.   Indifference Curve
4.   Marginal Rate of Substitution (MRS)

Fig.1  Indifference Curves
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2. diminishing value

1.   Utility 

• Important Concepts 

Oh, No! 712 sellers!  

Which one should I 

choose??

• ignore the inter-item competition

• reduce information

• high complexity

Our solution: use an utility function to simplify the analysis

of users’ preferences; combine MCDM [3] and IC [6]
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1. Personalized ranking of sellers offering similar products

is an important problem in E-commerce

2. PRIMA: a novel personalized multi-attribute probabilistic

ranking model

• addressing the inter-attribute tradeoff and the inter-item

competition

• mathematical tractability, comparable accuracy to the

state-of-the-art work

• estimating each item’s probability of being the user’s

best choice; critical to personalized ranking, market

analysis and pricing strategies
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