PRIMA: PROBABILISTIC RANKING WITH INTER-ITEM COMPETITIO MULTLATTRI BUTE UTIL

Introduction

Personalized service in E-commerce

- Important Concepts
- 1. Utility
- 2. Skyline Items
- 3. Indifference Curve
- 4. Marginal Rate of Substitution (MRS)

Qingming Li, Zhanjiang Chen, H. Vicky Zhao

Dept. of Automation, Tsinghua Univ., State Key Lab of Intelligent Tech. & Sys., Tsinghua National Laboratory for Info. Sci. and Tech., Beijing, P.R. China

Our Proposed Method PRIMA

(A) Utility Function U(p,r)

1. monotonicity

$$\frac{\partial U}{\partial p} > 0, \frac{\partial U}{\partial r} > 0$$
2. diminishing value

$$\frac{\partial^2 U}{\partial p^2} > 0, \frac{\partial^2 U}{\partial r^2} > 0$$
3. separable

$$U(p,r) = u_1(p) + u_2(r)$$

- one example is $U = \alpha \ln p + (1 \alpha) \ln r$
- $\alpha \in [0,1]$ describing the user's personalized preference on the price-reputation tradeoff

(B) Parameter Estimation

• MRS Estimation based on IC [6]

For each item $s_i = (p_i, r_i)$, PRIMA obtains the MRS range $[\underline{k}_i, k_i]$

- α Estimation
- 1. for an item $s_i = (p_i, r_i)$, let k_i be the true MRS at s_i $k_i = -\frac{\alpha}{1} \cdot \frac{r_i}{1} \implies$ $\alpha = -$

2. given one item
$$(p_i, r_i)$$
 and $[\underline{k}_i, \overline{k}_i]$, PRIMA obtains $[\underline{\alpha}_i, \overline{\alpha}_i]$ by

 $k_i p_i - r_i$

$$\overline{\alpha}_{i} = \frac{\underline{k}_{i} p_{i}}{\underline{k}_{i} p_{i} - r_{i}}, \qquad \underline{\alpha}_{i} = \frac{\overline{k}_{i} p_{i}}{\overline{k}_{i} p_{i} - r_{i}}$$

3. given multiple items, PRIMA refines the range $[\alpha, \overline{\alpha}]$ by

$$\alpha = \min_{i=1}^{N} \alpha_i, \qquad \underline{\alpha} = \max_{i=1}^{N} \underline{\alpha}_i$$

Probabilistic Ranking (The Inter-Item Competition) (\mathbf{C})

Define P_i be the probability for item s_i to be selected

1. Two-Item Competition

$$s_{i} = (p_{i}, r_{i}), s_{j} = (p_{j}, r_{j}), \text{ if } U(p_{i}, r_{i}) > U(p_{j}, r_{j})$$

$$\Rightarrow \begin{cases} \alpha > A_{i}(j), \text{ if } \{p_{i} > p_{j}, r_{i} < r_{j}\} \\ \alpha < A_{i}(j), \text{ if } \{p_{i} < p_{j}, r_{i} > r_{j}\}, \end{cases} \text{ where } A_{i}(j) = \frac{-\ln(r_{i}/r_{j})}{\ln(p_{i}/p_{j}) - \ln(r_{i}/r_{j})} > 0$$

2. Multi-Item Competition

 S_i is the best choice $\iff U(p_i, r_i) > U(p_j, r_j), \forall j \neq i$

$$\Rightarrow \alpha \in \left[\underline{\alpha}_{p_i}, \overline{\alpha}_{p_i}\right], \text{ where } \underline{\alpha}_{p_i} = \max_{p_j < p_i} A_i(j), \ \alpha_{p_i} = \min_{p_j > p_i} A_i(j)$$

3. Assume α is uniformly $\min\{\alpha, \alpha_{p_i}\} - \max\{\underline{\alpha}, \underline{\alpha}_{p_i}\}$ \Rightarrow distributed in $[\alpha, \alpha]$

Yan Lindsay Sun

Dept. of Electrical, Computer and Biomedical Engineering, Univ. of Rhode Island, USA

Real User Test

Data Collection and Processing

- Types of products: Cuisine coffee maker DCC-1200 (~\$100) iTouch 5th generation (~\$200) Canon EOS 5D Mark II camera (~\$2000)
- Price and reputation information from eBay
- For each product, 15 item sets were generated, each with 4~6 skyline items
- 21 subjects were interviewed

(B) Performance Metrics

- Ranking Quality (rq): $rq = (N v_b)/(N 1)$, N is the number of items, and v_b is the ranking position of the user's true choice
- Success Rate: the frequency that PRIMA ranks the user's true choice in the first place

() Results

Real user test results of ranking quality					
	Coffee Maker	iTouch	Canon	Average	
PRIMA	74.01%	76.43%	77.80%	76.08%	
IC	78.57%	73.00%	77.75%	76.44%	
MAPS	71.12%	76.12%	74.18%	73.80%	

Real user test results of success rate						
	Coffee Maker	iTouch	Canon	Average		
PRIMA	59.86%	58.84%	62.24%	60.32%		
IC	58.50%	56.80%	57.49%	57.60%		
MAPS	38.10%	57.49%	46.60%	47.39%		

- Both IC [6] and PRIMA give higher ranking quality and success rate than MAPS [5].
- PRIMA achieves comparable or even better performance than IC [6]. Note that PRIMA is also much simpler than IC [6] and mathematically tractable.

Conclusion

1. Personalized ranking of sellers offering similar products is an important problem in E-commerce

2. PRIMA: a novel personalized multi-attribute probabilistic ranking model

- addressing the inter-attribute tradeoff and the inter-item competition
- mathematical tractability, comparable accuracy to the state-of-the-art work
- estimating each item's probability of being the user's best choice; critical to personalized ranking, market analysis and pricing strategies

Reference

[1] F. Ricci, L. Rokach, and B. Shapira, Introduction to Recommender Systems Handbook, Springer, 2011.

[2] G. Adomavicius and A. Tuzhilin, "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions," IEEE Transactions on Knowledge & Data Engineering, vol. 17, no. 6, pp. 734–749, 2005.

[3] J. C. Butler, J. S. Dyer, and J. Jia, "Enabling Etransactions with Multi-attribute Preference Models," European Journal of Operational Research, vol. 186, no. 2, pp. 748–765, 2008.

[4] R. S. Pindyck and D. L. Rubinfeld, Microeconomics, Prentice Hall, 2005.

[5] Q. Feng, L. Liu, and Y. Sun, "Enhancing Personalized Ranking" Quality Through Multidimensional Modeling of Inter-Item Competition," IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, pp. 1–10, 2010.

[6] X. Gong, H. V. Zhao, and Y. L. Sun, "Probabilistic Ranking of Multi-Attribute Items Using Indifference Curve," in IEEE International Conference on Acoustics, Speech and Signal Processing, 2014, pp. 6132–6136.

[7] X. Gong, "Online User Purchasing Behavior Modeling," University of Alberta MSc Thesis, 2017.