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Brief review of RatioCut problem

Given a similarity graph               , denoting by                                      the 
indicator matrix, we can write the RatioCut problem as

By defining a scaled cluster assignment matrix               as                        , 
this problem is equivalent to 

where      is Laplacian matrix.     is discrete and should satisfy                , 
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Motivation of this work

• Two-stage solving procedure is not desired.

• Unsteady clustering performance makes it not practical to use.

Idea: We obtain the final clustering results as soon as the objective is solved. 
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Block-diagonal graph



When    is large enough,     will have    connected components.

where         is to avert that    is too sparse. 

Directly solving RatioCut (DRC)

From matrix theory, we know that

The multiplicity   of the eigenvalue 0 of the Laplacian matrix     is equal to the 
number of connected components in the graph with the similarity matrix    .
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Adding this formula to original objective, we come to
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Optimization
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When     is fixed, we need 

solve the subproblem
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When     is fixed, we obtain 

the following subproblem

F

We solve the following problem by optimizing     and    alternatively:S F



Experiments

Figure 1. DRC VS. RRC

Table 1. Clustering comparison



Summary

➢ DRC is a method which performs better at the expense of 
additive computation compared with Relaxed RatioCut.

➢ Starting with a fixed initialization, DRC obtains steady 
clustering results without any postprocessing. 

➢This work presents an example of leveraging block-diagonal 
similarity matrix, and this can be extended to other graph-
based clustering models. 
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