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® Edges are of particular importance in the o e g /0 Edge Map Refinement \ / 1 if E"(p)=0and ((R1>2)or
textureless depth image. @ = - E'(p)==< , (R2>2)or(R3>2)or(R4>2));
. . : 1 - 2 Ef Broken edges and holes between edges E"(p) else;
® We have addressed depth image super-resolution S i N 2 - cause depth leak in the SR reconstruction: \
(DISR) by high-resolution (HR) edge prediction, S i — '
Instead of HR texture prediction. -l ormnes [T [y 7 edges
® Trained network makes the low-quality edge map ‘
more sharp while removing jagged artifacts. Proposed Framework A | .
® Guided by the high-quality edge map, we perform We extract initial edge map from interpolated LR depth map and repair it using - —A A Four edge patterns.
L DISR. y CNN. Since the CNN output often contains broken edges and holes, we refine it. 1.We first detect the broken edges and
Guided by the high-quality edge map, we do upsampling using a TV model. then connect tlhem usilng El - ® Edge-Guided Upsampling
® Trainina dataset f _ {E (p)  if E'(p)=Land Sum (MI &Mh)=0 |
® Top: | J E"(p) E" (p) else Guided by the edge map Ef, we use a
Interpolated (X 4) Middlebury stereo dataset and Laser Scan dataset. ’ variational approach to get the depth
depth map by bicubic First input: Patch of size 21X 21 around each pixel in EY. SR image DR:
and its edges. Second input: Its corresponding patch region in D8 .
- Ry Bic
® Loss Fuction: ngan E(D7) =E(D™) + AR moom
® Bottom: _ Bic R Bic 2
Our final result and min —[ygt log p(ygt, w) + (1— ygt) log(1— p(ygt,w))] E(D™) =2 _(D"(p)—D"(p))
W 2. We extract 3 x 3 patch centered by each P
edge map learned . . . - ot , ,
om our CNN. where y E _the binary label v_alue, p(yy ) IS the output that indicates non-edge pixel in E"and perform AND R = ZE'(p)[ax(DR)‘ +‘ay(DR)‘ ]
the probability to be edge point. operation using four patterns: >
N PANG AN /
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to acquire the high-quality edge map
from the low-quality one.

® We utilize the low-quality edge map to
connect broken edges and fill holes In
the edge map.
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Depth SR reconstruction results in Laser Scan dataset.
Upsampling factor is 4. Left to right: Ground Truth, ® \We use the high-quality edge map to
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