S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview Dataset Motivation

Proposed technique Procedure Results

Conclusions

Automatically Linking Digital Signal Processing Assessment Questions to Key Engineering Learning Outcomes

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Objective

Tatinati, Tatinati, Kevin Hartman, Andy W. H.	• Knowledge (K) Constructive	Assessment Questions	Label
Khong	• Application (A) alignment [1]	Question 1	K/A/T?
Introduction Objective	• Transfer (T)	Question 2	K/A/T?
Paradigm		Question 3	к/а/т?
Methods Overview Dataset Motivation Proposed	Ļ		
Procedure Results	Automatic question classifier		
Conclusions			

DSP question classification

by learning outcomes S. Supraja, Siyanagaraja

> D. Boud and N. Falchikov, "Aligning assessment with longterm learning," Assess. Eval. High. Edu., vol. 31, pp. 399-413, 2006.

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview

Dataset Motivation

Proposed technique Procedure Results

Conclusions

Existing method - LDA ^[2]

Question	Ground truth	Predicted label
Question 1: Describe (T2) frequency (T1) response (T1).	К	Т
Question 2: Sketch (T2) the frequency (T1) response (T1).	A	A
Question 3: Describe (T2) the frequency (T1) response (T1) of a microphone (T2).	Т	К

• Too few words in short texts to determine relationships between co-occurrences of words across questions

• Incorrect grouping of words and topics to determine labels

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet allocation," J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction Objective Paradigm

Methods

Overview

Dataset Motivation

Proposed technique Procedure Results

Conclusions

Existing method - WNTM ^[3]

- Word level co-occurrences
- Distribution over topics in dense word-word space

[3] Y. Zuo, J. Zhao, and K. Xu, "Word network topic model: A simple but general solution for short and imbalanced texts," Knowledge, Inform. Syst., vol. 48, pp. 379-398, 2016.

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview

Dataset Motivation

Proposed technique Procedure Results

Conclusions

Existing method - WNTM

Word	Pseudo-question
describe	frequency response
	frequency response
	microphone
response	describe frequency sketch
	frequency describe
	frequency microphone
sketch	frequency response
microphone	describe frequency
	response
frequency	describe response sketch
	response describe
	response microphone

Question	Ground truth	Predicted label
Question 1: Describe frequency response.	К	А
Question 2: Sketch the frequency response.	А	А
Question 3: Describe the frequency response of a microphone.	т	Т

Dataset

DSP question classification by learning outcomes

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview

Dataset Motivatio

Proposed technique Procedure Results

Conclusions

- 150 digital signal processing questions
 - Textbooks, online sources, undergraduate course
- Manual labeling
 - According to "K", "A", "T"
 - Independent of content
- Machine learning algorithm
 - 70% questions randomly chosen for training
 - Remaining 30% for testing model

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview Dataset

Motivation

Proposed technique Procedure Results

Comparison of techniques

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview

Motivation

Proposed technique Procedure Results

Conclusions

Customising WNTM

- Stopword selection: Removal of words that cause topics to be overlapped (e.g. articles)
- Redundancy of word combinations which do not contribute to question type
 - Content-agnostic words: "how", "why", "describe"
 - Technical words: "response", "frequency"

Word	Pseudo-question
describe	frequency response frequency response microphone
response	describe frequency sketch frequency describe frequency microphone
sketch	frequency response
microphone	describe frequency response
frequency	describe response sketch response describe response microphone

• Topic representation of technical words closely linked to surrounding agnostic words

Results (1)

DSP question classification

by learning outcomes

Objective Paradigm

Methods

Overview Dataset Motivation

Proposed technique Procedure Results

Conclusions

- Mean F1 measure of q-WNTM 0.848, about 10% increase compared to WNTM
- q-WNTM has lowest standard deviation of 0.101

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview Dataset Motivation

Proposed technique Procedure Results

Conclusion

Figure 1: TF-IDF

Figure 3: WNTM

Figure 2: LDA

Figure 4: q-WNTM

• q-WNTM minimizes misclassifications

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DSP question classification by learning outcomes

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview Dataset Motivatio

Proposed technique Procedure Results

Conclusions

• Proposed q-WNTM addressed:

- Appropriate stopword selection for questions
- Word co-occurrence redundancy which increases co-occurrences amongst agnostic words and reduces relationships with technical words
- Enables more accurate classification of assessment questions in line with intended learning outcomes

S. Supraja, Sivanagaraja Tatinati, Kevin Hartman, Andy W. H. Khong

Introduction

Objective Paradigm

Methods

Overview Dataset Motivation

Proposed technique Procedure Results

Conclusions

THANK YOU!

This work was conducted within the Delta-NTU Corporate Lab for Cyber-Physical Systems with funding support from Delta Electronics Inc and the National Research Foundation (NRF) Singapore under the Corp Lab@University Scheme.

Contact details:

S. Supraja – ssupraja001@e.ntu.edu.sg Sivanagaraja Tatinati – tatinati@ntu.edu.sg Kevin Hartman – kevin@hartmans.net Andy W. H. Khong – andykhong@ntu.edu.sg