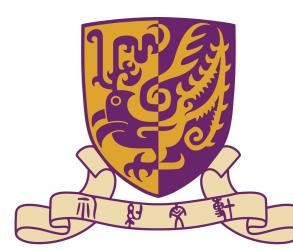
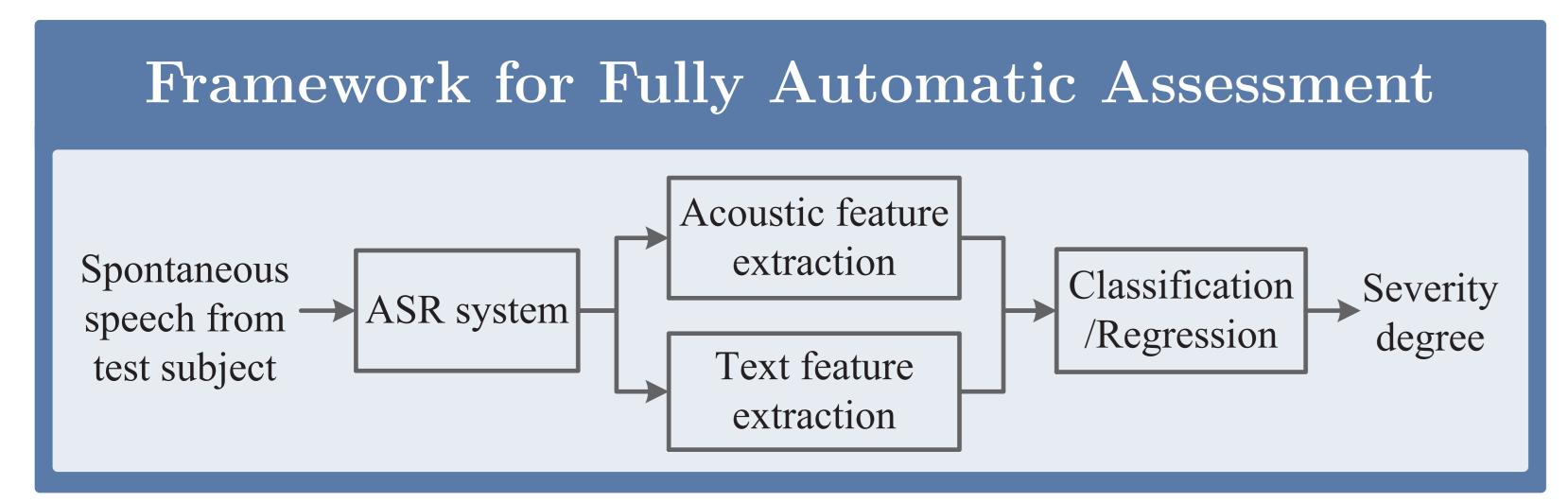
Automatic Speech Assessment for Aphasic Patients Based on Syllable-Level Embedding and Supra-Segmental Duration Features Ying Qin¹, Tan Lee¹ and Anthony Pak Hin Kong²



¹Department of Electronic Engineering, The Chinese University of Hong Kong

Background & Motivation

- Aphasia: acquired language impairment caused by brain injury. - Affecting phonology, lexicon, syntax, semantics of language system.
- **Speech assessment**: essential part of aphasia assessment. – Determine severity/type of impairment.
- Acoustical and linguistic analysis of story-telling speech. • **Subjective assessment**: by speech pathologists.
- Requiring clinical, linguistic and cultural background knowledge.
- Goal: automatic speech assessment for people with aphasia (PWA).



• Contributions:

- Robust text features with word embedding techniques. - ASR-derived features. \rightarrow manual transcription not needed.

Dataset: Cantonese AphasiaBank

- **Spontaneous speech**: 104 aphasic and 149 unimpaired subjects.
- Narrative tasks: 4 picture descriptions, 1 procedure description, 2 story telling and 1 personal monologue.
- "Story": except the personal monologue, the speech of each task is about a specific topic. $\rightarrow 7$ stories.
- Subjective score: based on Cantonese Aphasia Battery. - Aphasia Quotient (AQ: 0-100). Low \rightarrow severe.

ASR System for Aphasia Assessment

- **Target**: domain- and speaking-style-matched ASR system.
- **Training set**: 12.6h speech recordings of 101 unimpaired speakers.
- Test set: speech recordings of 17 unimpaired speakers and 82 aphasic speakers on 7 stories.
- Acoustic model:

– Structure: standard DNN-HMM with 6 hidden layer and 1024 neurons per layer.

– Pronunciation lexicon: 630 Cantonese syllables.

Syllable = Initial + Final e.g. tek bo 踢球

- Acoustic unit: 20 Initials + 53 Finals + 5 non-content sounds.

- Language model: syllable bi-grams.
- Implementation: Kaldi Speech Recognition Toolkit.
- **Performance**: syllable error rate (SER).
- Unimpaired speakers: 18.24% vs. impaired speakers: 48.08%.

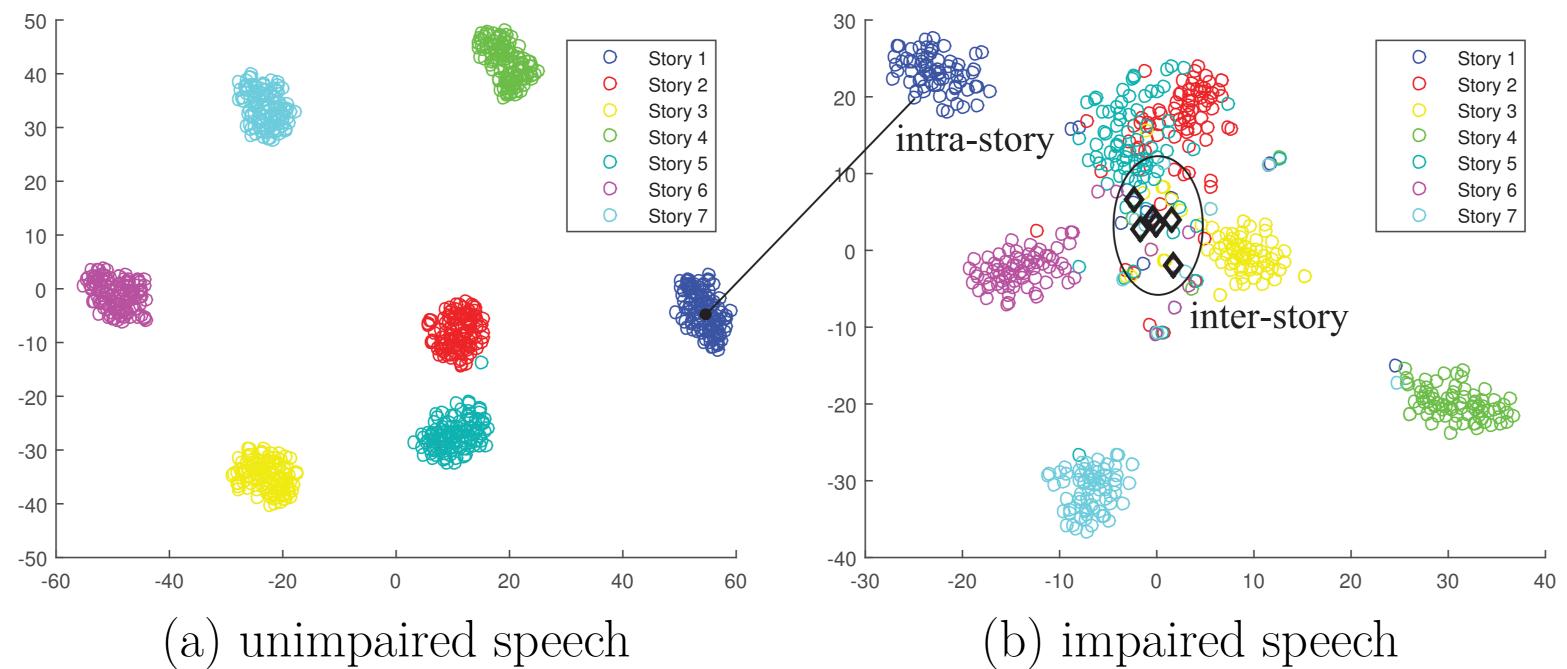
Feature Extraction

1. Text Features: Syllable-level Embedding Features

- **Observation**: No. of topic-specific keywords decrease; subjects and objects are missing in impaired sentences.
- Goal: robust text features that reflect topic-specific content of a story and differentiate unimpaired story and impaired ones.
- Method: 50-dimensional story-level vector representation. - CBOW model trained by syllable-level transcriptions of unimpaired speech.

- Story vector: average of syllable vectors in the story.

- Implementation: Word2vec Toolkit.
- 2D display of story vectors derived from manual transcriptions:



- Two types of text features:
- Inter-story feature: No. of misclustered story vectors (divide 7). - K-means clustering: 7 story vectors from an impaired subject + 7×118 story vectors from unimpaired subjects. \rightarrow 7 classes. – Degree of content confusion. \rightarrow Few content words.
- Intra-story feature: cosine similarity between an impaired story vector and the unimpaired story vectors (mean) on the same topic. – Discrepancy between impaired and unimpaired content.
- Effect of ASR performance: average deviation (text feature_{ASR}-text feature_{transcription}) for low- and high-SER groups.

SER		$SER \le 50\%$	SER > 50%
Deviation of	Inter-story	0.020	0.182
feature values	Intra-story	0.002	-0.092

– Deviation is small for low-SER group. – Deviation is more noticeable for high-SER group. – Over-estimation of impairment severity for high-SER group.

 2 Department of Communication Sciences and Disorders, University of Central Florida

2. Acoustic Features: Supra-segmental Duration • **Observation**: impaired fluency of speech. • Method: 13 features from syllable-level time alignment of ASR. • Feature selection: LASSO regression + correlation with AQ. • Five types of acoustic features: • Non-speech-to-speech duration ratio. • Average duration of silence segments (>0.5s). • Average duration of speech segments. • Ratio of silence segment count to syllable count. • Syllable count per second. **Experimental Results**

1. Binary Classification of Aphasia Severity

- Leave-one-out cross validation.
- machine (SVM).
- Classification results in F1 score:

Text features Acoustic featu All featur

89.4%(42/47) and 88.6%(31/35).

2. Automatic Prediction of AQ

- Regression problem.
- Leave-one-out cross validation.

	LR	RF
Text features only (2)	0.821	0.820
Acoustic features only (5)	0.651	0.655
All features (7)	0.816	0.839

- Summary:
- Text features are more effective.

- Enlarge the PWA speech database.

• High-AQ: AQ>90 (35) vs. Low-AQ: AQ<90 (47). • Binary decision tree (BDT), random forest (RF), and support vector

		DE	
	BDT	RF	SVM
es only (2)	0.851	0.896	0.841
ures only (5)	0.792	0.821	0.789
ures (7)	0.891	0.903	0.874

• With the best classifier, the recalls for Low-AQ and High-AQ groups are

• Linear regression (LR) and random forest (RF).

• Correlations between predicted AQ (AQ_p) and reference AQ (AQ_r):

• 50% (41/82) with $|AQ_p - AQ_r| < 5.0$, 74.4% (61/82) smaller than 10.0.

– Two types of features are complementary to each other.

Future work

• Improve the ASR accuracy on impaired speech.

• Explore other text features related to syntactic impairment.

• Analyze relation between aspects of AQ score and proposed features.