Probability Reweighting in Social Learning: Optimality and Suboptimality

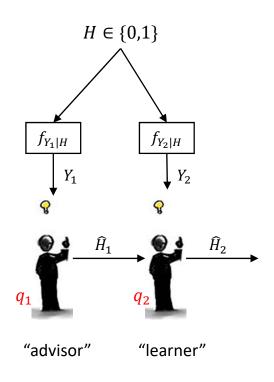
Daewon Seo, UIUC

Joint work with Ravi Kiran Raman, Lav R. Varshney

Social learning

- Our decision is influenced not only by private observation, but also by prior decisions by others
 - Buying a cell-phone
- Rhim and Goyal (2013) coined "social teaching"
 - Sequential social learning
 - Combination of agents with beliefs differing from prior could outperform that of agents with exact prior

Sequential social learning*



- $H \in \{0, 1\}, \ \mathbb{P}(H = 0) = p_0$
- Each agent has private observation $Y_i = H + Z_i$
 - $Z_i \sim N(0, \sigma_i^2)$
- Each agent is unaware of p_0 , and has own belief q_i
- Agent 2 also observes prior decisions \widehat{H}_1
- Each agent makes a selfish decision to minimize own Bayes risk as if q_i is the true prior
- "Advisor" and "Learner"
 - Eg. Al-assisted human decision

^{*}Rhim and Goyal, "Social teaching: Being informative vs. Being right in sequential decision making," ISIT 2013

Sequential social learning

- Sequential binary hypothesis testing
 - Classical binary hypothesis test: $\frac{f(y_i|1)}{f(y_i|0)} \leq \frac{c_{10}p_0}{c_{01}(1-p_0)}$
 - Agent 1: $\frac{f(y_1|1)}{f(y_1|0)} \le \frac{c_{10}q_1}{c_{01}(1-q_1)}$
 - Agent 2: $\frac{f(y_2, \widehat{H}_1|1)}{f(y_2, \widehat{H}_1|0)} \le \frac{c_{10}q_2}{c_{01}(1-q_2)}$
 - Due to independence, $\frac{f(y_2, \widehat{H}_1 \mid 1)}{f(y_2, \widehat{H}_1 \mid 0)} = \frac{f(y_2 \mid 1)}{f(y_2 \mid 0)} \cdot \frac{p_{[2]}(\widehat{H}_1 \mid 1)}{p_{[2]}(\widehat{H}_1 \mid 0)}$
 - Agent 2: $\frac{f(y_2|1)}{f(y_2|0)} \le \frac{c_{10}q_2}{c_{01}(1-q_2)} \cdot \frac{p_{[2]}(\widehat{H}_1|0)}{p_{[2]}(\widehat{H}_1|1)} =: \gamma$

Sequential social learning

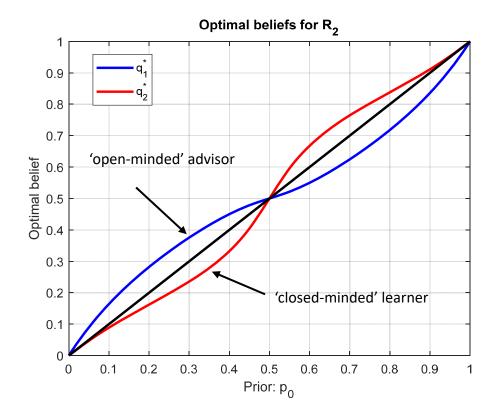
• Decision threshold when Gaussian noise $N(0, \sigma^2)$

$$\lambda(\gamma, \sigma^2) = \frac{1}{2} + \sigma^2 \log \gamma$$



- (by Oracle) $R_i = c_{10} p_0 p_{\widehat{H}_i|H}(1|0) + c_{01}(1-p_0) p_{\widehat{H}_i|H}(0|1)$
- Q: $q_1 = q_2 = p_0$ works the best for R_2 ?

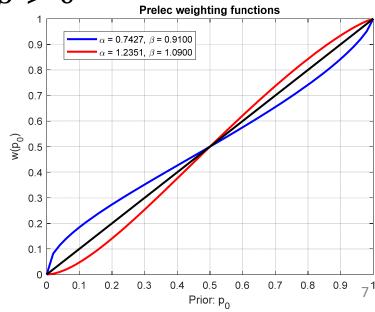
Sequential social learning



• True prior is NOT optimal for agent 2, even though each makes selfish decision

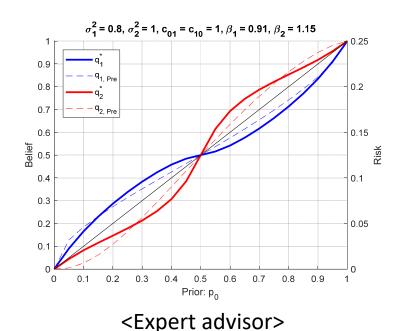
Prelec reweighting function

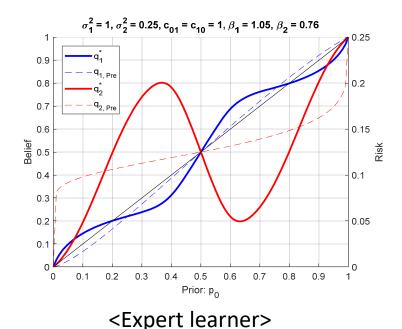
- Comes from cumulative prospect theory in behavioral economics
 - Kahneman (2002), Thaler (2017) won Nobel prize in economics
- Explains irrational human behaviors:
 - Winning probability of lottery
- $w(p; \alpha, \beta) = e^{-\beta(-\ln p)^{\alpha}}$ for $\alpha, \beta > 0$
 - α < 1: open-minded
 - $\alpha > 1$: closed-minded



Diverse expertise levels

- Model expertise of each person through observation noise variance: σ_i^2
 - $\sigma_1^2 < \sigma_2^2$: advisor has more expertise
 - $\sigma_1^2 > \sigma_2^2$: learner has more expertise



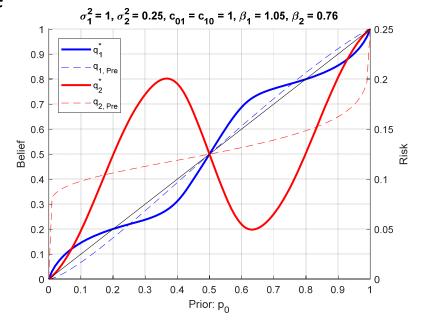


Diverse expertise levels

- Model expertise of each person as observation noise variance: σ_i^2
 - $\sigma_1^2 < \sigma_2^2$: advisor has more expertise
 - $\sigma_1^2 > \sigma_2^2$: learner has more expertise

Thm. For any (σ_1^2, σ_2^2) , (q_1^*, q_2^*) satisfies

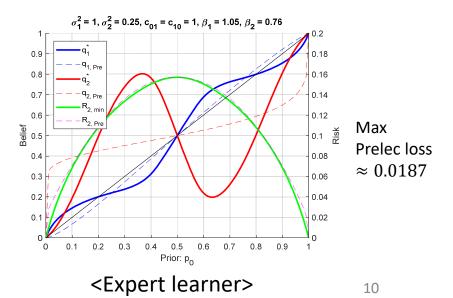
- q_1^* is below p_0 if and only if $q_2^* \geq \frac{c_{01}}{c_{01}+c_{10}}$, with equality at $q_2^* = \frac{c_{01}}{c_{01}+c_{10}}$
- $p_0 = q_1^* = q_2^*$ if and only if $p_0 \in \{0, \frac{c_{01}}{c_{01} + c_{10}}, 1\}$



Prelec function in social learning

- Prelec curve fitting for (q_1^*, q_2^*)
 - Among Prelec functions that cross the same fixed point $p_0^* = \frac{c_{10}}{c_{10}+c_{01}}$,
 - Pick the minimax Prelec function such that $\underset{\alpha,\beta}{\operatorname{argmin}} \|q_n(\cdot) w(\cdot;\alpha,\beta)\|_{\infty}$





Team construction criterion

• When a social planner, aware of p_{0} , couples a team as follows

Thm. Consider two advisors $q_1 < {q_1}^\prime$. Then, advisor with q_1 is a better choice if and only if

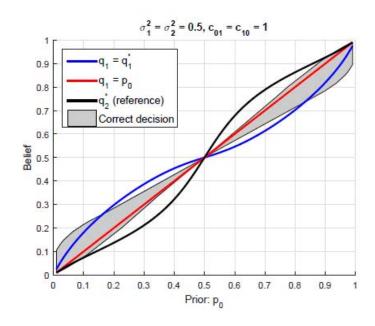
$$\frac{\mathbb{P}_1[\widehat{H}_1 = \widehat{H}_2 = 1, \widehat{H}_{1'} = \widehat{H}_{2'} = 0]}{\mathbb{P}_0[\widehat{H}_1 = \widehat{H}_2 = 1, \widehat{H}_{1'} = \widehat{H}_{2'} = 0]} \ge \frac{c_{10}p_0}{c_{01}(1 - p_0)}$$

• So when learner, unaware of p_0 , picks a better advisor based on q_2 if and only if

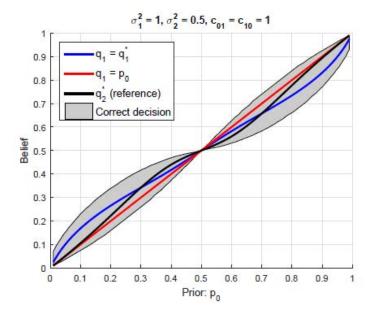
$$\frac{\mathbb{P}_1[\widehat{H}_1 = \widehat{H}_2 = 1, \widehat{H}_{1}, = \widehat{H}_{2}, = 0]}{\mathbb{P}_0[\widehat{H}_1 = \widehat{H}_2 = 1, \widehat{H}_{1}, = \widehat{H}_{2}, = 0]} \ge \frac{c_{10}p_0}{c_{01}(1 - p_0)}$$

Team construction criterion

- Consider two advisors with $q_1=q_1^st$, $q_1'=p_0$
- With what belief the learner can pick better advisor?



Equal expertise: optimal q_2^* never satisfies the iff condition



Expert learner: optimal q_2^* will always pick advisor with q_1^*

Conclusion

- Diverse expertise in social learning
 - When advisor has more expertise, overall behavior of optimal agents remains similar to Rhim & Goyal's result
 - While when learner has more expertise, it shows different nature
- Prelec function approximation
 - Prelec function is nearly optimal when advisor has more expertise, otherwise suboptimal
- Self-organizing team criterion
- Implication on AI supported human inference
 - Support of suboptimal AI system could help human decision more, and vice versa