

CONTENT-BASED REPRESENTATIONS OF AUDIO **USING SIAMESE NEURAL NETWORKS** P. Manocha, R. Badlani, A. Kumar, A. Shah, B. Elizalde, B. Raj

Motivation

- Need effective ways to browse by content through audio databases of growing sizes

- Manually selecting features for the task for feature selection is too much a hassle

Problem

-To create an End to End Query by example retrieval system to rank the search results by semantic content.

Our Approach

Train a Siamese Neural Network which encode the audio-class specific information in a vector representation.

Challenges

-Searching audio events is hard because the video metadata focus mainly on images.

-The metadata does not guarantee the presence of an audio event.

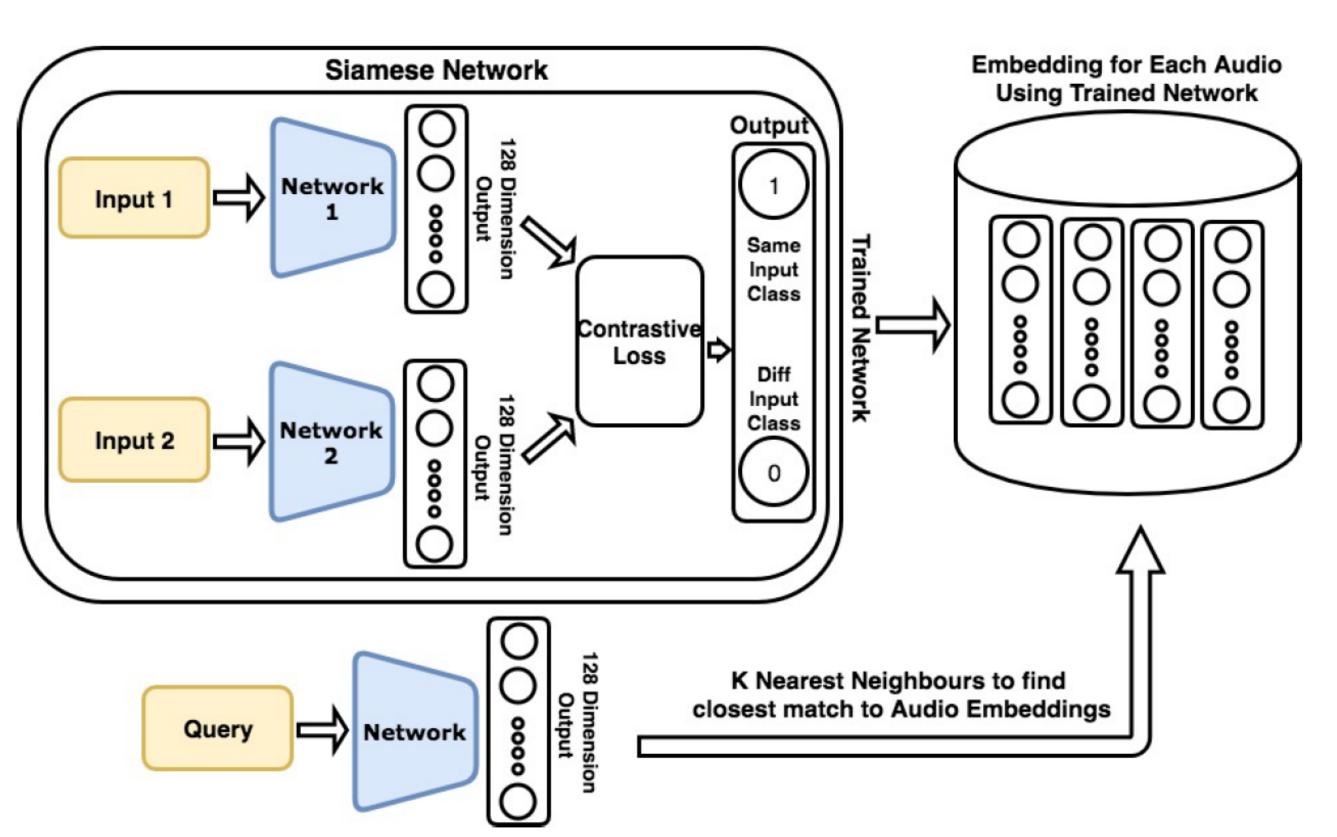
-The audio of user-generated videos, even within the same class, is unstructured and highly variable

Fingerprinting and Similarity Matching

-Fingerprinting is useful in finding the exact match i.e. for finding multiple videos of the same event.

-Our aim is similarity matching -> to retrieve all semantically similar files together

Custom Dataset Information US8K and TUT 2016. Overall, we consider 76 sound classes

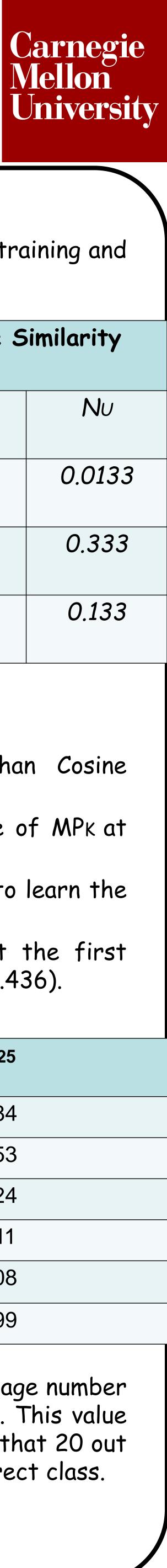

-We consider list of sound events from 3 databases- ESC-50, -We work on audio recordings from YouTube. For each of 76 classes, obtain 100 recordings from YouTube.

- Cosine Similarity - Euclidean Distance

- Balanced (NB) Unbalanced Train Sets (NU)

- Mean Average Precision across all queries (MAP) - Precision at 1 (MP1) - Precision of Top K Retrieval (МРк)

Approach and Model


Loss Function

$$(W,Y,X1,X2) = \frac{(Y) (D_w^2)}{2} + \frac{(1-Y)max\{0,(m-D_w)\}^2}{2}$$

Similarity Measures

Training

Metrics

Results

We obtain the best results with unbalanced training and Euclidean distance as the distance measure.

	Euclidian Distance		Cosine Si	
Measures	NB	NU	NB	
MAP	0.0241	0.0342	0.0186	
MP1	0.314	0.436	0.132	
MP 25	0.099	0.177	0.105	

Conclusions

- Euclidian Distance performs better than Cosine Distance

- Took K=25 as we found the highest value of MPK at K=25.

- Nu performs better than NB as it is able to learn the discriminative features better.

- MP1 values are fairly high, meaning that the first positive class hit is obtained at Rank 3 (for 0.436).

Audio Class	MP 25
Wind Blowing	0.784
Sheep	0.753
Pig	0.724
Water Drop	0.711
Clock Tick	0.708
Brushing Teeth	0.699

- Multiplying MPK by K would give us the average number of correct class matches in top K retrievals. This value is nearly 20 for class 'wind blowing', meaning that 20 out of the 25 retrieved samples were of the correct class.