

Knowledge Transfer From Weakly Labeled Audio Using Convolutional Neural Network For Sound Events and Scenes

facebook research

Anurag Kumar*, Maksim Khadkevich+, Christian Fugen + alnu@cs.cmu.edu, khadkevich,fuegen@fb.com

More details and Code - http://www.cs.cmu.edu/~alnu/TLWeak.htm

In A Nutshell!

- CNN for large scale weak label learning
- Transfer learning using weakly labeled data
- State of Art Results on Audioset-Balanced Training
- State of Art Results on ESC-50 Dataset
- Outperforms human accuracy on ESC-50 dataset
- Establishing Semantic Relationships for Sounds

Weak Labels

- Acoustic Events and Scenes in audio recording
- Biggest Challenge Labeled Data
- Annotations with time stamps of audio events

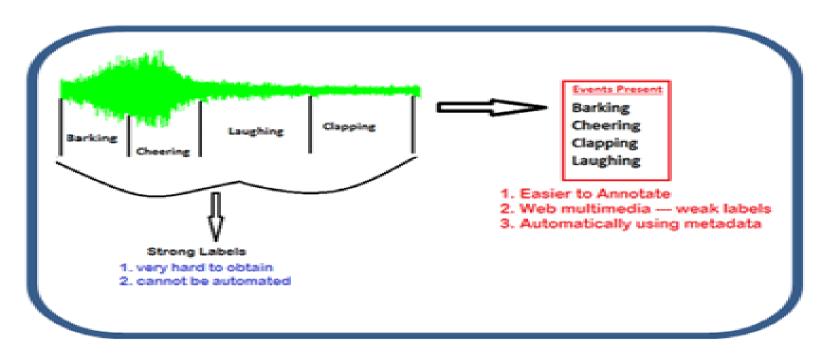


Figure 1: Strong Label vs Weak Labels

- Weakly Labeled Data: Presence or absence of events in the recording
- Weak Labels Lesser labeling effort, can be automated

CNN for Weakly Labeled AED

General Idea - Work with Segments, Need to look through whole recording

Strong Label Assumption Training

- Ignore weak label Assume event is present in whole recording
- Use your favorite CNN architecture

Prop: CNN for AED using Weak Labels

- Treat weak labels as weak
- Efficiently handle recording of variable length
- Single Forward pass Computationally Efficient
- Segment and hop size controlled by network design parison

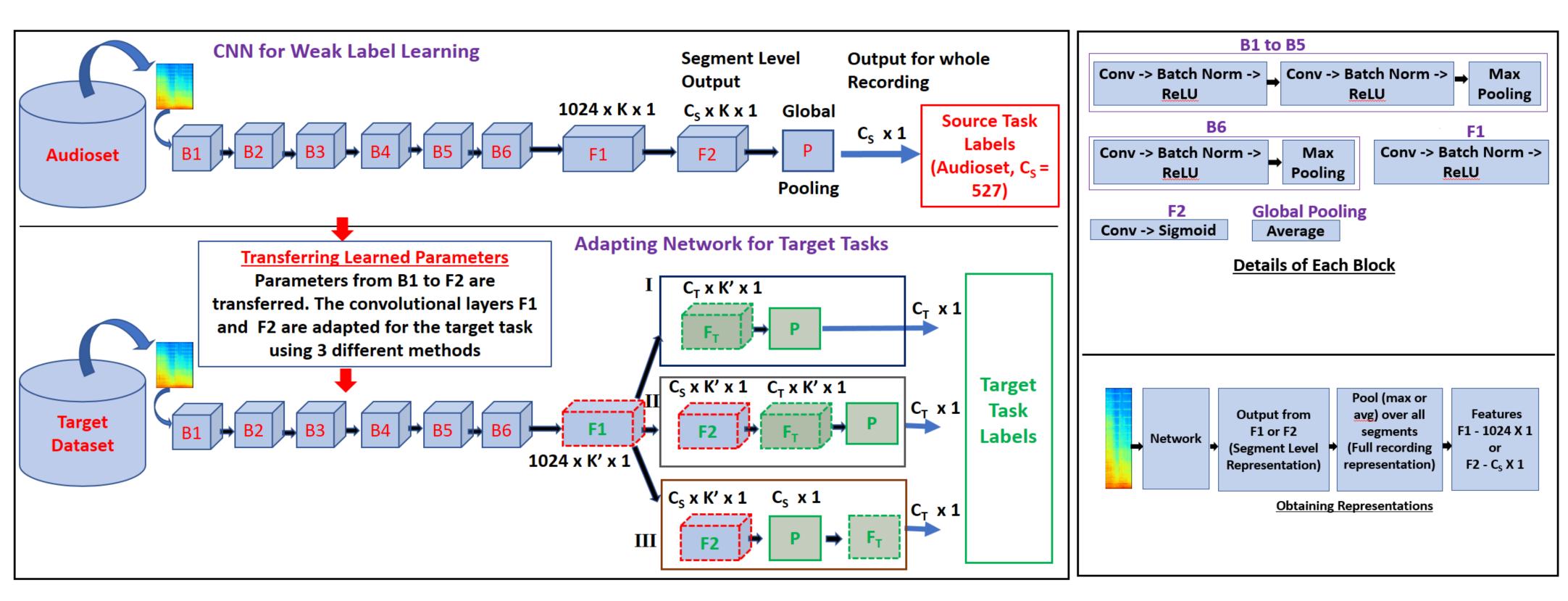


Figure 2: Top Left and Right: Deep CNN for Weakly Labeled Audio. Bottom Left: Adapting CNN for target task. 3 different methods (I, II, III). Bottom Right: Obtaining representations for audios.

Transfer Knowledge

- Domain and Task Adaptation
- Off the shelf representations
- Adapt and then obtain representations
- Train classifiers

Results - Weak Label Learning

Audioset

- Largest Dataset for sound events Weakly Labeled
- 527 sound events
- Balanced and Unbalanced training set
- Evaluation set \sim 20,000 recordings

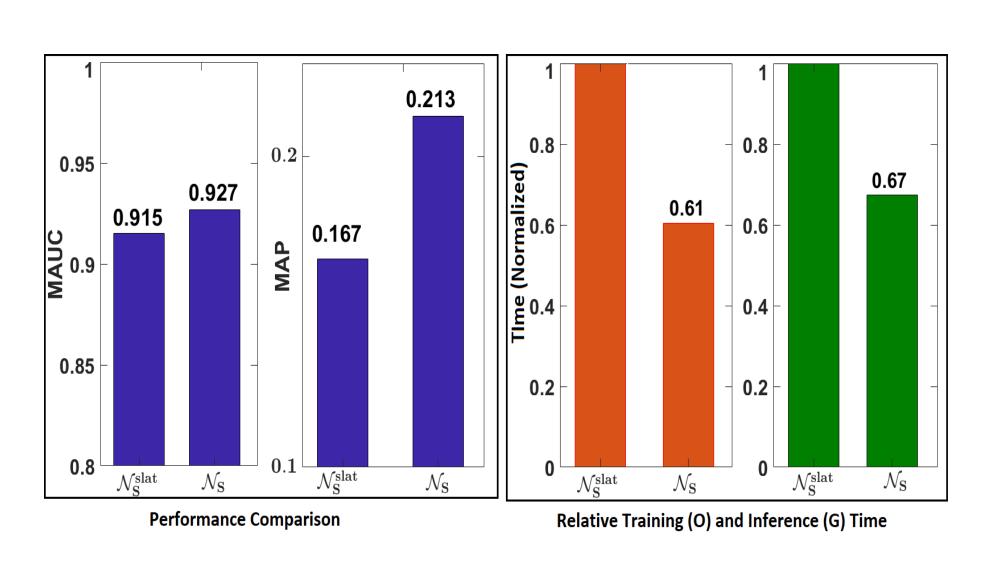
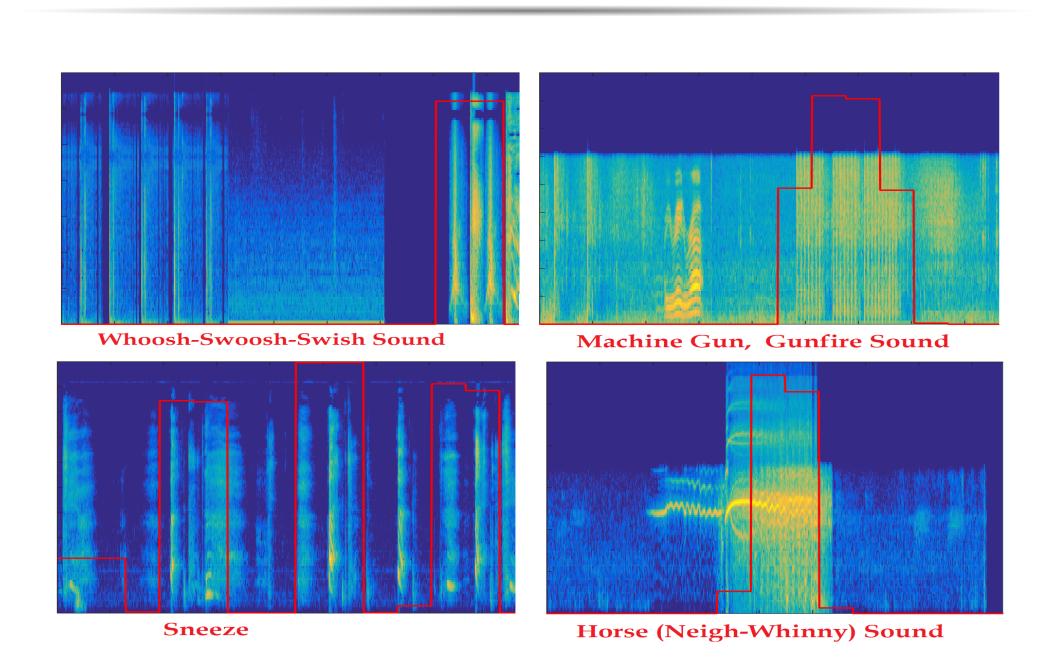


Figure 3: Left: Mean Avg. Precision and Mean Area Under ROC curves, Right: Computational Time Comparison

Event Localization Examples in Audioset



Results - Domain Adaptation

Audio Event Classification on ESC-50

Network	F1		F2	
	max()	avg()	max()	avg()
$\mathcal{N}_{\mathbf{S}}$	82.8	81.6	65.5	64.8
$\mathcal{N}_{\mathbf{T}}^{\mathbf{I}}$	83.5	81.3	_	_
$\mathcal{N}_{\mathbf{T}}^{\mathbf{II}}$	83.5	81.8	81.9	81.5
$\mathcal{N}_{\mathbf{T}}^{\mathbf{III}}$	83.3	82.6	82.6	81.9

Figure 4: Accuracy on ESC-50 dataset. ESC-50 - 50 Sound Events. Comparison with others in bar plot

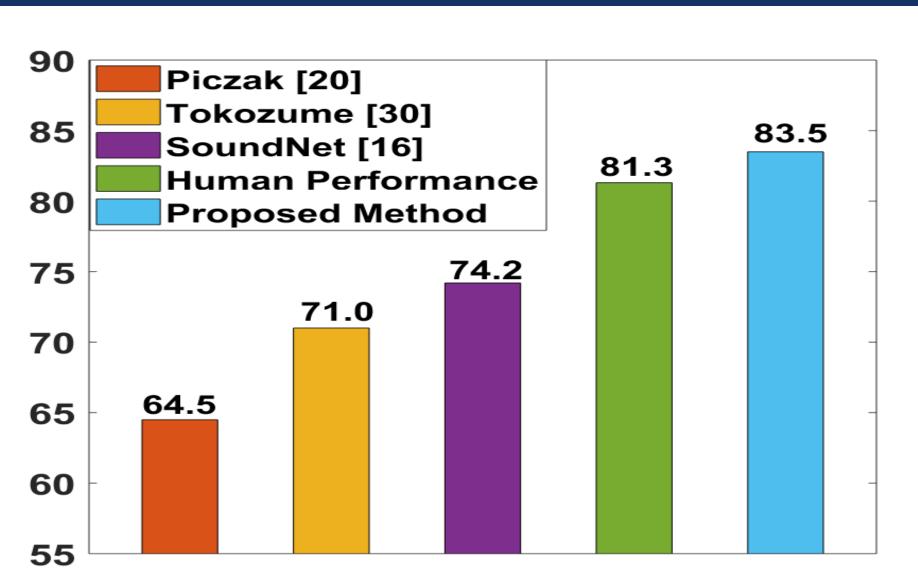
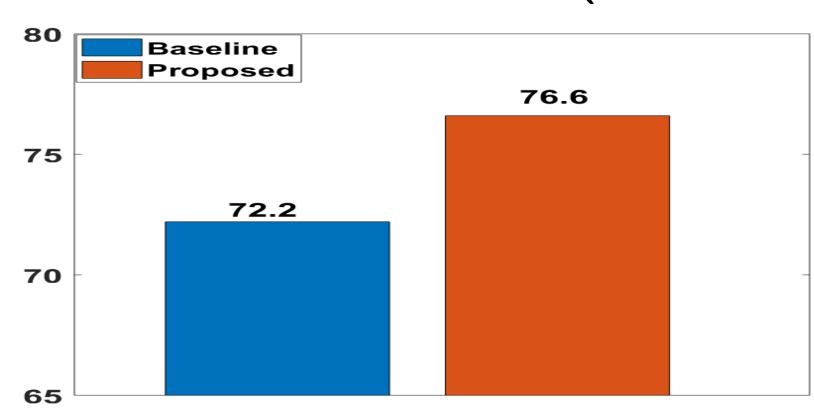


Figure 5: ESC-50 Accu Comparison with other methods

Results - Task Adaptation

Acoustic Scene Classification (DCASE16)



Semantics for Sounds

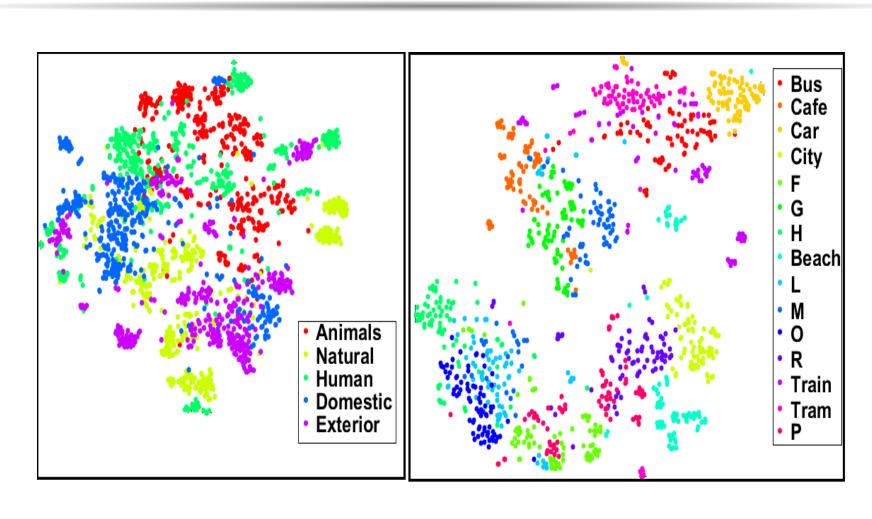


Figure 6: t-SNE visualizations of learned representations. L: Higher 5 categories in ESC, R: DCASE16

Automatically Learn relationship between acoustic scenes and sound events

See which events from Audioset fires up for different acoustic scenes

Scene	Frequent Highly Activated Sound Events	
Cafe	Speech, Chuckle-Chortle, Snicker, Dishes, Television	
City Center	Applause, Siren, Emergency Vehicle, Ambulance	
Forest Path	Stream, Boat Water Vehicle, Squish, Clatter, Noise, Pour	
Home	Speech, Finger Snapping, Scratch, Dishes, Baby Cry, Cutlery	
Beach	Pour, Stream, Applause, Splash - Splatter, Gush	
Library	Finger Snapping, Speech, Fart, Snort	
Office	Finger Snapping, Snort, Cutlery, Speech, Cutlery	
Residential Area	Applause, Crow, Clatter, Siren	
Park	Bird Song, Crow, Stream, Wind Noise, Stream	