Greedy Algorithm With Approximation Ratio For Sampling Noisy Graph Signals
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Motivation

Consider a graph G = (V, F) (e.g. asocial networks)
with n (large) vertices, the edges of G represents
that the connected vertices have similar "attributes'.
A graph signal is a map s : V — R, which gives
each vertex a real number (e.g. the preferences of
people in a social networks). Assuming s is smooth,
meaning that s[vi] ~ sluvo] if (v1,19) € F.

1. Can we recover the signal by observing a subset
of nodes by leveraging the smoothness property?

2. How many such s|v|s needed to observe in order
to recover s Even if some nodes are noisy?’

The Noisy Model

L is the Laplacian matrix of G, with eigendecom-
position £ = VXY Vi) are the eigenvectors of
the smallest k eigenvlaues. Signal s is said to be
k-bandlimited if s € Span{Vy,}. For I C [n] with
[I| = k, sy is the projection of s indexed by I, V; is
the submatrix of Vi) with rows indexed by 1.

o If sy observed exactly, then VVl_ls 7 recovers s
pertectly provide V7 is full rank.

o If s;+ e is observed with noise e, the above
recover method gives worst case error to be

O-maxa/]_l) — 1/O-min<‘/l)-
o We aim to find I that makes the worst case error
minimal, i.e., oy, (V7) is maximal.

Max o,...(C') Problem [CHEN15]

For a n X k matrix A with k& < n, how to find
a k x k submatrix C' of A by selecting k£ rows
from A, such that the

O'mm<0>

Is maximal?’
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Previous Works

« A greedy algorithm that maximizing o, (C) is
provided in [CHENT15], no bounds given.

- Greedy algorithms for minimizing Vol(C'~1) and
|C~ Y| studied in [TSIT16], no bounds given.

= An submodular approach for analyzing MSE
bound was given in [CHAM17|, depends on the
factor v and only works for Gaussian noise.

= Maximizing Vol(C') studied in [CIVR09,13] and
INIKO15], cF-inapproximability result is given, as
well as c*-approximation algorithm provided.

Our Contribution

1. We prove formally that the Max oy, (C') problem
is NP-hard.

2. For any € > 0, we give an approximation
algorithm that solve the Max op,;,(C) problem,
with provable approximation ratio of Tiok + 3

NP-hardness Reduction

We follow the idea in |[CIVR09]. The reduc-
tion is from EXACT-3-COVER(X3C): let X =
{x1,--- 2} and C = {cy,--- , ¢y} where ¢; C X
with |¢;| = 3. Decide if there are k/3 disjoint ele-
ments from C' such that their union is X.

Cj = {mra Lssy mt}'

L -

Zeros at dots : :
T - 1/\/§ 3/\/ﬁ 1/\/5
S = 1/\/§ —2/.\/5 4/\/5
t - 1N§ _1/.\/6 —5/.\/@

Let A be the matrix with rows of all such vectors.
One can show that the X3C is true iff there exist C'
in A such that C1C = 1.

The Approx. Algorithm

Step One:
1. Let C' < ¢ the empty matrix

2.Find a row a! € A and a! € C that maximizes
Vol(C") where

C
I __
= |
Set C « (',
3. Repeat step 2 until C has k rows. Output C
Step Two:

1. Let C' < Step One

2.If there is a row a! € A and a! & C, such that
(14 ¢€)Vol(C') < Vol(C"), then set C' < C’, where

C" is the matrix that replace one row in C by a? .

3. Repeat step 2 until there is no update. Output
C.

Theorem

Let Cyp be the submatrix of A with oy, maxi-
mal, C' is the output of Step Two, then

1
. > .
0m1n<C> - (1 4 €>ko_mm(00pt)a

and Step Two runs in poly(n, k).

Sketch of Proof

1. Let o(C) = minege (a1 2oece |6 @], ¢ is the
1th row of C'. Let x* achieves the minimal, show
that «* L H_; with H_; = Span{¢; € C|i # j}.

2. Show that a(C)/Vk < omin(C) < a(O).

3. Show that it Step Two stops with output C.
one has a(C) > oyin(Copr) /(1 + €)V k.

4. Note that the Vol(C) in Step Two will increase
by factor (1 + €) after each iteration.
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Sketch of Proof(Cont.)

5. By |[CIVRO09], the output of Step One has

volume approximation of k!, thus Step Two has
at most klog, .k iterations.

The 1st step of the proof can be illustrated as fol-
lowing picture:

C2

(1 + cz)Taz

12| + |eyz| =

leiz| + ez = (e2 — 1)

c1z| + ezz| = (e1 — e2)'®

lerz| + |eyz| = (—c2 — er) '

Empirical Simulation
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Sampling set size
We run our algorithms over Erdos-Renyi graph (p =
0.5) with n = 50 nodes and k£ = 10 to choose the

first 10 samples, then use naive greedy to choose the
following nodes when sample size greater than 10.
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