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Motivation

Consider a graphG = (V,E) (e.g. a social networks)
with n (large) vertices, the edges of G represents
that the connected vertices have similar "attributes".
A graph signal is a map s : V → R, which gives
each vertex a real number (e.g. the preferences of
people in a social networks). Assuming s is smooth,
meaning that s[v1] ∼ s[v2] if (v1, v2) ∈ E.
1. Can we recover the signal by observing a subset

of nodes by leveraging the smoothness property?
2. How many such s[v]s needed to observe in order

to recover s? Even if some nodes are noisy?

The Noisy Model

L is the Laplacian matrix of G, with eigendecom-
position L = VΣV−1, V(k) are the eigenvectors of
the smallest k eigenvlaues. Signal s is said to be
k-bandlimited if s ∈ Span{V(k)}. For I ⊂ [n] with
|I| = k, sI is the projection of s indexed by I , VI is
the submatrix of V(k) with rows indexed by I .
� If sI observed exactly, then VV −1

I sI recovers s
perfectly provide VI is full rank.
� If sI + e is observed with noise e, the above
recover method gives worst case error to be
σmax(V −1

I ) = 1/σmin(VI).
�We aim to find I that makes the worst case error
minimal, i.e., σmin(VI) is maximal.

Max σmin(C) Problem [CHEN15]

For a n× k matrix A with k � n, how to find
a k × k submatrix C of A by selecting k rows
from A, such that the

σmin(C)
is maximal?

Previous Works

• A greedy algorithm that maximizing σmin(C) is
provided in [CHEN15], no bounds given.

• Greedy algorithms for minimizing Vol(C−1) and
||C−1||F studied in [TSIT16], no bounds given.

• An submodular approach for analyzing MSE
bound was given in [CHAM17], depends on the
factor α and only works for Gaussian noise.

• Maximizing Vol(C) studied in [CIVR09,13] and
[NIKO15], ck-inapproximability result is given, as
well as ck-approximation algorithm provided.

Our Contribution

1.We prove formally that the Max σmin(C) problem
is NP-hard.

2. For any ε > 0, we give an approximation
algorithm that solve the Max σmin(C) problem,
with provable approximation ratio of 1

(1+ε)k.

NP-hardness Reduction

We follow the idea in [CIVR09]. The reduc-
tion is from EXACT-3-COVER(X3C): let X =
{x1, · · · , xk} and C = {c1, · · · , cn} where ci ⊂ X
with |ci| = 3. Decide if there are k/3 disjoint ele-
ments from C such that their union is X .

Let A be the matrix with rows of all such vectors.
One can show that the X3C is true iff there exist C
in A such that CTC = I .

The Approx. Algorithm

Step One:
1. Let C ← φ the empty matrix
2. Find a row aTi ∈ A and aTi 6∈ C that maximizes

Vol(C ′) where

C ′ =
[
C
aTi

]
.

Set C ← C ′.
3. Repeat step 2 until C has k rows. Output C
Step Two:

1. Let C ← Step One
2. If there is a row aTi ∈ A and aTi 6∈ C, such that

(1 + ε)Vol(C) ≤ Vol(C ′), then set C ← C ′, where
C ′ is the matrix that replace one row in C by aTi .

3. Repeat step 2 until there is no update. Output
C.

Theorem

Let Copt be the submatrix of A with σmin maxi-
mal, C is the output of Step Two, then

σmin(C) ≥ 1
(1 + ε)k

σmin(Copt),

and Step Two runs in poly(n, k).

Sketch of Proof

1. Let α(C) = minx∈Rk:||x||2=1
∑

ci∈C |c
T
i x|, ci is the

ith row of C. Let x∗ achieves the minimal, show
that x∗ ⊥ H−j with H−j = Span{ci ∈ C|i 6= j}.

2. Show that α(C)/
√
k ≤ σmin(C) ≤ α(C).

3. Show that if Step Two stops with output C,
one has α(C) ≥ σmin(Copt)/(1 + ε)

√
k.

4. Note that the Vol(C) in Step Two will increase
by factor (1 + ε) after each iteration.

Sketch of Proof(Cont.)

5. By [CIVR09], the output of Step One has
volume approximation of k!, thus Step Two has
at most k log1+ε k iterations.

The 1st step of the proof can be illustrated as fol-
lowing picture:

Empirical Simulation
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Step One Only
Greedy [Chen15]
Step One + Two

We run our algorithms over Erdos-Renyi graph (p =
0.5) with n = 50 nodes and k = 10 to choose the
first 10 samples, then use naive greedy to choose the
following nodes when sample size greater than 10.
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