Greedy Algorithm With Approximation Ratio For Sampling Noisy Graph Signals

Changlong Wu, Wenxin Chen, June Zhang {wuchangl, wenxinc, zjz}@hawaii.edu Department of Electrical Engineering, University of Hawai'i at Mānoa

Motivation

Consider a graph G = (V, E) (e.g. a social networks) with n (large) vertices, the edges of G represents that the connected vertices have similar "attributes". A graph signal is a map $\mathbf{s} : V \to \mathbb{R}$, which gives each vertex a real number (e.g. the preferences of people in a social networks). Assuming s is smooth, meaning that $\mathbf{s}[v_1] \sim \mathbf{s}[v_2]$ if $(v_1, v_2) \in E$.

- 1. Can we recover the signal by observing a subset of nodes by leveraging the smoothness property?
- 2. How many such $\mathbf{s}[v]$ s needed to observe in order to recover **s**? Even if some nodes are noisy?

The Noisy Model

 \mathcal{L} is the Laplacian matrix of G, with eigendecomposition $\mathcal{L} = \mathcal{V}\Sigma\mathcal{V}^{-1}$, $\mathcal{V}_{(k)}$ are the eigenvectors of the smallest k eigenvlaues. Signal s is said to be k-bandlimited if $s \in \text{Span}\{\mathcal{V}_{(k)}\}$. For $I \subset [n]$ with $|I| = k, s_I$ is the projection of s indexed by I, V_I is the submatrix of $\mathcal{V}_{(k)}$ with rows indexed by I.

- \diamond If s_I observed exactly, then $\mathcal{V}V_I^{-1}s_I$ recovers sperfectly provide V_I is full rank.
- \diamond If $s_I + e$ is observed with noise e, the above recover method gives **worst case error** to be $\sigma_{\max}(V_I^{-1}) = 1/\sigma_{\min}(V_I).$
- \diamond We aim to find I that makes the worst case error minimal, i.e., $\sigma_{\min}(V_I)$ is maximal.

Max $\sigma_{\min}(C)$ Problem [CHEN15]

For a $n \times k$ matrix A with $k \ll n$, how to find a $k \times k$ submatrix C of A by selecting k rows from A, such that the

 $\sigma_{\min}(C)$

is maximal?

Previous Works

- provided in [CHEN15], no bounds given. $||C^{-1}||_F$ studied in [TSIT16], no bounds given.
- A greedy algorithm that maximizing $\sigma_{\min}(C)$ is - Greedy algorithms for minimizing $\operatorname{Vol}(C^{-1})$ and
- An submodular approach for analyzing MSE bound was given in [CHAM17], depends on the factor α and only works for Gaussian noise.
- Maximizing Vol(C) studied in [CIVR09,13] and [NIKO15], c^k -inapproximability result is given, as well as c^k -approximation algorithm provided.

Our Contribution

- is NP-hard.
- 2. For any $\epsilon > 0$, we give an approximation algorithm that solve the Max $\sigma_{\min}(C)$ problem, with **provable** approximation ratio of $\frac{1}{(1+\epsilon)k}$.

NP-hardness Reduction

We follow the idea in [CIVR09]. The reduction is from EXACT-3-COVER(X3C): let X = $\{x_1, \cdots, x_k\}$ and $C = \{c_1, \cdots, c_n\}$ where $c_i \subset X$ with $|c_i| = 3$. Decide if there are k/3 disjoint elements from C such that their union is X.

Let A be the matrix with rows of all such vectors. One can show that the X3C is true iff there exist Cin A such that $C^T C = I$.

1. We prove formally that the Max $\sigma_{\min}(C)$ problem

 $c_j = \{x_r, x_s, x_t\}$

The Approx. Algorithm

Step One:

- **1**. Let $C \leftarrow \phi$ the empty matrix
- **2.** Find a row $a_i^T \in A$ and $a_i^T \notin C$ that maximizes $\operatorname{Vol}(C')$ where

$$C' = \begin{bmatrix} C \\ a_i^T \end{bmatrix}$$

Set $C \leftarrow C'$.

3. Repeat step 2 until C has k rows. Output C

Step Two:

- 1. Let $C \leftarrow$ Step One
- **2.** If there is a row $a_i^T \in A$ and $a_i^T \notin C$, such that $(1+\epsilon)\operatorname{Vol}(C) \leq \operatorname{Vol}(C')$, then set $C \leftarrow C'$, where C' is the matrix that replace one row in C by a_i^T .
- **3**. Repeat step 2 until there is no update. Output C.

Theorem

Let C_{opt} be the submatrix of A with σ_{\min} maximal, C is the output of **Step Two**, then

$$\sigma_{\min}(C) \ge \frac{1}{(1+\epsilon)k} \sigma_{\min}(C_{opt}),$$

and **Step Two** runs in poly(n, k).

Sketch of Proof

- **1.** Let $\alpha(C) = \min_{x \in \mathbb{R}^k: ||x||_2=1} \sum_{c_i \in C} |c_i^T x|, c_i$ is the ith row of C. Let x^* achieves the minimal, show that $x^* \perp H_{-j}$ with $H_{-j} = \operatorname{Span}\{c_i \in C | i \neq j\}.$
- **2.** Show that $\alpha(C)/\sqrt{k} \leq \sigma_{\min}(C) \leq \alpha(C)$.
- **3**. Show that if **Step Two** stops with output C, one has $\alpha(C) \geq \sigma_{\min}(C_{opt})/(1+\epsilon)\sqrt{k}$.
- **4**. Note that the Vol(C) in **Step Two** will increase by factor $(1 + \epsilon)$ after each iteration.

UNIVERSITY of HAWAI'I® Mānoa

Sketch of Proof(Cont.)

- 5. By [CIVR09], the output of **Step One** has volume approximation of k!, thus **Step Two** has at most $k \log_{1+\epsilon} k$ iterations.
- The 1st step of the proof can be illustrated as following picture:

Empirical Simulation

We run our algorithms over Erdos-Renyi graph (p =0.5) with n = 50 nodes and k = 10 to choose the first 10 samples, then use naive greedy to choose the following nodes when sample size greater than 10.

Acknowledgments: The authors were partially supported by Center for Science of Information(CSoI), an NSF Science and Technology center, under grant agreement CCF-0939370.