Greedy Algorithm With Approximation Ratio For Sampling Noisy Graph Signals

Changlong Wu, Wenxin Chen, June Zhang \{wuchangl, wenxinc, zjz\}@hawaii .edu

Department of Electrical Engineering, University of Hawai'i at Mānoa

Motivation

Consider a graph $G=(V, E)$ (e.g. a social networks) with n (large) vertices, the edges of G represents that the connected vertices have similar "attributes". A graph signal is a map s: $V \rightarrow \mathbb{R}$, which gives each vertex a real number (e.g. the preferences of people in a social networks). Assuming s is smooth meaning that $\mathbf{s}\left[v_{1}\right] \sim \mathbf{s}\left[v_{2}\right]$ if $\left(v_{1}, v_{2}\right) \in E$.

1. Can we recover the signal by observing a subset of nodes by leveraging the smoothness property?
2. How many such $\mathbf{s}[v] \mathrm{s}$ needed to observe in order to recover s ? Even if some nodes are noisy?

The Noisy Model

\mathcal{L} is the Laplacian matrix of G, with eigendecomposition $\mathcal{L}=\mathcal{V} \Sigma \mathcal{V}^{-1}, \mathcal{V}_{(k)}$ are the eigenvectors of the smallest k eigenvlaues. Signal s is said to be k-bandlimited if $s \in \operatorname{Span}\left\{\mathcal{V}_{(k)}\right\}$. For $I \subset[n]$ with $|I|=k, s_{I}$ is the projection of s indexed by I, V_{I} is the submatrix of $\mathcal{V}_{(k)}$ with rows indexed by I.
\diamond If s_{I} observed exactly, then $\mathcal{V} V_{I}^{-1} s_{I}$ recovers s perfectly provide V_{I} is full rank.
If $s_{I}+e$ is observed with noise e, the above recover method gives worst case error to be $\sigma_{\max }\left(V_{I}^{-1}\right)=1 / \sigma_{\min }\left(V_{I}\right)$.
We aim to find I that makes the worst case error minimal, i.e., $\sigma_{\min }\left(V_{I}\right)$ is maximal.

$\operatorname{Max} \sigma_{\min }(C)$ Problem [CHEN15]

For a $n \times k$ matrix A with $k \ll n$, how to find a $k \times k$ submatrix C of A by selecting k rows from A, such that the

$$
\sigma_{\min }(C)
$$

is maximal?

Previous Works

- A greedy algorithm that maximizing $\sigma_{\min }(C)$ is provided in [CHEN15], no bounds given.
- Greedy algorithms for minimizing $\operatorname{Vol}\left(C^{-1}\right)$ and $\left\|C^{-1}\right\|_{F}$ studied in [TSIT16], no bounds given.
- An submodular approach for analyzing MSE bound was given in [CHAM17], depends on the factor α and only works for Gaussian noise.
- Maximizing $\operatorname{Vol}(C)$ studied in [CIVR09,13] and [NIKO15], c^{k}-inapproximability result is given, as well as c^{k}-approximation algorithm provided.

Our Contribution

1. We prove formally that the $\operatorname{Max} \sigma_{\min }(C)$ problem is NP-hard.
2. For any $\epsilon>0$, we give an approximation algorithm that solve the $\operatorname{Max} \sigma_{\min }(C)$ problem, with provable approximation ratio of $\frac{1}{(1+\epsilon) k}$.

> NP-hardness Reduction

We follow the idea in [CIVR09]. The reduction is from EXACT-3-COVER(X3C): let $X=$ $\left\{x_{1}, \cdots, x_{k}\right\}$ and $C=\left\{c_{1}, \cdots, c_{n}\right\}$ where $c_{i} \subset X$ with $\left|c_{i}\right|=3$. Decide if there are $k / 3$ disjoint elements from C such that their union is X.

The Approx. Algorithm

Step One

1. Let $C \leftarrow \phi$ the empty matrix
2. Find a row $a_{i}^{T} \in A$ and $a_{i}^{T} \notin C$ that maximizes $\operatorname{Vol}\left(C^{\prime}\right)$ where

$$
C^{\prime}=\left[\begin{array}{c}
C \\
a_{i}^{T}
\end{array}\right]
$$

$$
\text { Set } C \leftarrow C^{\prime} \text {. }
$$

3. Repeat step 2 until C has k rows. Output C Step Two:
4. Let $C \leftarrow$ Step One
5. If there is a row $a_{i}^{T} \in A$ and $a_{i}^{T} \notin C$, such that $(1+\epsilon) \operatorname{Vol}(C) \leq \operatorname{Vol}\left(C^{\prime}\right)$, then set $C \leftarrow C^{\prime}$, where C^{\prime} is the matrix that replace one row in C by a_{i}^{T}.
6. Repeat step 2 until there is no update. Output C.

Theorem

Let $C_{\text {opt }}$ be the submatrix of A with $\sigma_{\min }$ maximal, C is the output of Step Two, then

$$
\sigma_{\min }(C) \geq \frac{1}{(1+\epsilon) k} \sigma_{\min }\left(C_{o p t}\right)
$$

and Step Two runs in $\operatorname{poly}(n, k)$.

Sketch of Proof

Let A be the matrix with rows of all such vectors. One can show that the X3C is true iff there exist C in A such that $C^{T} C=I$.

Sketch of Proof(Cont.)

5. By [CIVR09], the output of Step One has volume approximation of k !, thus Step Two has at most $k \log _{1+\epsilon} k$ iterations.
The 1st step of the proof can be illustrated as following picture:

$\left|c_{1}^{T} x\right|+\left|c_{2}^{T} x\right|=\left(c_{1}-c_{2}\right)^{T} x$
$\left|c_{1}^{T} x\right|+\left|c_{2}^{T} x\right|=\left(-c_{2}-c_{1}\right)^{T} x$

Empirical Simulation

We run our algorithms over Erdos-Renyi graph ($p=$ 0.5) with $n=50$ nodes and $k=10$ to choose the first 10 samples, then use naive greedy to choose the following nodes when sample size greater than 10 .

Acknowledgments: The authors were partially supported by Center for Science of Information(CSol), an NSF Science and Technology center under grant agreement CCF-0939370

