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INTRODUCTION AND CONTRIBUTION

• Research to conditions for accurate and efficient learning from
Big Data over Networks

• We introduce the Network Nullspace Property (NNSP)

• NNSP involves the sampling set and the cluster structure of
the underlying graph

• NNSP requires the existence of network flows with demands

• NNSP is a sufficient condition for accurate recovery of clus-
tered graph signals via Sparse Label Propagation

BACKGROUND

• Sparse Label Propagation (SLP) [1] extends Label Propagation
by requiring signal differences over edges to be sparse

• SLP takes the network structure of data into account

• SLP learns entire graph signals from few samples

• SLP amounts to a convex optimization method based on the
primal-dual method popularized by Chambolle and Pock [2]

GRAPH SIGNAL RECOVERY

• given:
– data graph G = (V, E ,W)

– nodes represent data points, edges correspond to simi-
larities (correlations) between data points

– weighted adjacency matrix W ∈ RN×N
+

– signal samples y[i] = x[i] + ε[i], for i ∈M
– sampling set M is small compared to the size of graph
|M| � |V|
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• goal:
– recover the clustered graph signal value x[i] for all nodes
i ∈ V accurately via SLP

SPARSE LABEL PROPAGATION

• clustered graph signals have small total variation:

‖x‖TV :=
∑
{i,j}∈E

Wi,j |x[j]−x[i]|

• SLP amounts to the convex optimization problem:

x̂ ∈ arg min
x̃∈RV

||x̃||TV s.t. x̃[i] = x[i] for all i ∈M (1)

PIECE-WISE CONSTANT GRAPH SIGNALS

• we consider piece-wise constant (clustered) graph signal

x[i]=
∑
C∈F

aCIC [i], (2)

with some partition F = {C1, . . . , C|F|}.

• NOTE: SLP does not require knowledge of F !

NETWORK FLOWS WITH DEMANDS [3]

Definition 1 A flow with demands g[i] ∈ RV , for i ∈ V , is a mapping
f [·] : E → R satisfying the conservation law:∑

j∈N+(i)

f [{i, j}] −
∑

j∈N−(i)

f [{i, j}] = g[i]

at every node i ∈ V .

NETWORK NULLSPACE PROPERTY (NNSP)

Definition 2 A sampling setM ⊆ V is said to satisfy the NNSP, if for
any signature σe ∈ {−1,+1}∂F , which assigns the sign σe to a boundary
edge e ∈ ∂F , there is a flow f [e] with demands g[i] = 0 for i 6∈ M, and

f [e] = 2σeWe for e ∈ ∂F , f [e] ≤We for e ∈ E\∂F .

NNSP IMPLIES ACCURATE RECOVERY BY SLP

Theorem 3 If the sampling setM satisfies NNSP, then any solution x̂ of
(1) satisfies

‖x̂[·]− x[·]‖TV ≤6 min
aC∈RV

‖x[·]−
|F|∑
C=1

aCIC [·]‖TV

for any clustered graph signal x ∈ RV of the form (2)

EXPERIMENTS

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

If NNSP does not hold, recovery fails

FUTURE RESEARCH

• Extending our results to networks with certain structure

• Deriving information theoretic limits on required sample size
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