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Background

I In the recent era of data deluge, many applications collect and process large amount
of time series data for inference, learning, parameter estimation and decision making.

I Missing values frequently occur in the data recording process, e.g., some stocks may
suffer a lack of liquidity resulting in no price recorded, observation devices like sensors
breakdown, and weather or other conditions disturb sample taking schemes.

I Traditionally, the parameter estimation for time series from incomplete data has been
considered under Gaussian noise. However, many real-world data follow heavy-tailed
distributions, e.g., financial time series, brain fMRI, and animals movement.

Heavy-tailed Random Walk Model

I Student’s t-distribution: ft
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)
=
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I A univariate time series Y1, Y2, . . ., YT that follows a Student’s t random walk model:
Yt − Yt−1

i.i.d.∼ t
(
µ, σ2, ν

)
.

Problem Formulation
I An observation of this time series with D missing blocks:

y1, . . . , yt1,NA, . . . ,NA, yt1+n1+1, . . . ytd,NA, . . . ,NA,

ytd+nd+1, . . . , ytD,NA, . . . ,NA, ytD+nD+1, . . . , yT .

I Maximum likelihood estimation (MLE) problem for µ, σ2, and ν:
maximize
µ,σ2,ν>0

lobs
(
{yt}t∈Cobs

|µ, σ2, ν
)
, (1)

where
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(
{yt}t∈Cobs

|µ, σ2, ν
)

= log
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ft
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)

+ log

(
D∏
d=1
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)
dytd+1 · · · dytd+nd

)
.

I The objective function involves multiple integrals, and has no closed-form expression.
It is difficult to optimize this problem directly.

Expectation-Maximization Algorithm

I A general MLE problems with missing data Z, observed data X, parameter θ:
max
θ

log p(X|θ).
I EM algorithm is a very popular iterative algorithm to solve this kind of problem.

I E step: Q
(
θ|θ(k)

)
= EZ|X,θ(k) log p (X, Z|θ) .

I M step: θ(k+1) = argmax
θ

Q
(
θ|θ(k)

)
.

Stochastic Expectation-Maximization Algorithm
I Stochastic EM (when E step is intractable)

I Simulation step (S step): draw a realization Z(k) ∼ Z|X,θ(k).

I M step: θ(k+1)
1 = argmax

θ
log p

(
X, Z(k)|θ

)
, and θ(k+1) =

(
1− γ(k)

)
θ
(k+1)
1 + γ(k)θ(k), where∑

γ(k) = ∞ and
∑(

γ(k)
)2

< ∞.

Gaussian Mixture Representation of Student’s t-Distribution

I The Student’s t-distribution can be regarded as a Gaussian mixture.

Yt − Yt−1
i.i.d.∼ t

(
µ, σ2, ν

)
⇐=

{
Yt − Yt−1|µ, σ2, τt ∼ N

(
µ, σ2/τt

)
τt ∼ Gamma (ν/2, ν/2)

I We regard {τt} and {yt}t∈Cmis
as missing variables, and apply the stochastic EM

algorithm to solve problem (1).
I If we only regard {yt}t∈Cmis

as missing data, there would be no closed-form maximizer
in the M step.

Posterior Distribution of Missing Data

I The posterior distribution of missing data (complicated):
f
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I Gibbs sampling: instead of drawing the all components of the missing data jointly,
draws realizations of each component sequentially based on its distribution conditional
on all the other components.

I Conditional distributions (much simpler):

Yt|µ(k), σ(k), ν(k),Y−t, {τt} ∼ N

(
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(
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)
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(
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)
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)
,
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(
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2
,

(
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)2
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2

)
,

where T−t is the set of all the mixture weights except τt,and Y−t is the set of all the
samples except yt.

M step

I The resulting log-likelihood of the simulated complete data is
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I Maximizer:
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Algorithm

1. Initialize µ(0) and σ(0) as an arbitrary number, ν(0) as an arbitrary positive number, and
k = 0.
2. Draw one realization

{
y
(k)
t

}
t∈Cmis

and
{
τ
(k)
t

}
via Gibbs sampling method.

3. Compute µ
(k+1)
1 ,

(
σ
(k+1)
1

)2
, and ν

(k+1)
1 according to (2)-(4), and then update

µ(k+1) = µ(k) + γ(k)
(
µ
(k+1)
1 − µ(k)

)
,(

σ2
)(k+1)

=
(
σ2
)(k)

+ γ(k)
((

σ2
1

)(k+1) − (σ2
)(k))

,

ν(k+1) = ν(k) + γ(k)
(
ν
(k+1)
1 − ν(k)

)
,

where γ(k) = 1
k.

4. Return to step 2 or stop if the stopping criterion is satisfied.

Numerical Results
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Figure 1: Estimation errors of parameters versus iterations.
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Figure 2: Final estimation errors of three different estimation approaches. t random walk (ignore) means
MLE of Student’s t random walk by ignoring the missing values (only use the available differences bwtween
adjacent samples).

Conclusion
For heavy-tailed data, the traditional methods based on Gaussian distribution are too
inefficient, and significant performance gain can be achieved by designing the algorithm
under heavy-tailed model.
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