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OBJECTIVES

Semi-Blind Estimation: Using information in un-
known data symbols to estimate channel coettfi-
cients instead of using pilots only

Advantages:

e More accurate channel estimates in TDD /FDD
e Utilizing smaller number of pilot sequences

e More accurate downlink precoders in TDD sys.

e More accurate channel estimates as number of

antennas increases in Massive MIMO systems

SYSTEM MODEL

e Uplink TDD transmission in a single cell
e )M antennas at BS and K single antenna users
e Rayleigh fading channel:
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Shilot: Pilot sequences Sdata: data symbols

Complete received signal Y = [Y,io, Yia

ML ESTIMATORS

e Training Pilots: Estimation based on pilots
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e Full Data: All data symbols are known
1
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e Semi-Blind Estimation:
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No closed form solution — EM /MM Algorithms

SEMI-BLIND ESTIMATION

e Expectation-maximization (EM) algorithm with

latent variable S, 1s expressed as
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e Computational complexity of E-step for discrete

constellations grows exponentially with K.

e To reduce complexity we consider Gaussian and

GMM priors on data symbols.

EM Algorithm with Gaussian Prior:

e For tractability assume Sg,, is Gaussian, which

results in a closed form solution for E-step:
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e Channel estimation is improved even when data

symbols are from discrete constellation.

Heuristic Semi-blind Algorithm:

e Improving channel estimates by assigning the
conditional mean of data symbols to the closest

constellation point (heuristic approach):
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where F'(.) is the element-wise constellation

demmaping function.

e M-step remains the same.

SEMI-BLIND ESTIMATION
EM Algorithm with GMM Prior:

e To provide analytical support for the heuristic
semi-blind estimation, we consider a Gaussian
mixture model (GMM) for data symbols
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where ¢, € C**! is the transmitted constella-
tion vector at time n.

e Unknown variables ® = |G,cp,---,cy_1| at
(£ + 1)th iteration are estimated as
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e Heuristic semi-blind and EM algorithm with
GMM prior outperform EM algorithm with
Gaussian prior at high SNRs.

CRAMER-RAO BOUND

Deterministic CRB: unknown deterministic S,
e With unlimited number of antennas at BS

where A corresponds to the CRB of channel esti-
mation with Full Data.

Stochastic CRB: S, is Gaussian
e With unlimited number of antennas at BS

which is equivalent to having orthogonal pilot
sequences of length NV (pilots+data).
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NUMERICAL RESULTS

e Single cell of radius 500m
e QPSK data and orthogonal pilots
e COST-231 Hata model for g, k=1,--- | K
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