

1: Singapore University of Technology and Design (SUTD), 8 Somapah Rd, 487372, Singapore 2: Large Networks and Systems Group, Laboratoire des Signaux et Systmes CentraleSupelec, CNRS, Univ. Paris Sud, Univ. Paris-Saclay, 91192 Gif-sur-Y vette, France 3: Mathematical and Algorithmic Sciences Laboratory, France Research Center, Huawei Technologies, Paris, France

Motivation

Background:

- Wireless devices increase exponentially;
- 1000 x higher data rates in future;
- Critical needs for green and energy-efficient solutions;

What is PIM (Passive Intelligent Mirrors)?

- Physical meta-surface composed of many small-unit reflectors;
- Each unit reflect a phase-shifted version of incoming electromag
- Significantly reducing energy consumptions, and super-easy depleted

Key contributions:

- Formulated a sum-rate maximization problem for the outdoor MIMO system scenario equipped with PIM;
- Proposed MM-based method for addressing this non-convex;

System model

Outdoor scenario:

multi-user MISO downlink communication system equipped with

ACHIEVABLE RATE MAXIMIZATION BY PASSIVE INTELLIGENT MIRRORS Chongwen Huang¹, Alessio Zappone², Mérouane Debbah^{2,3}, Chau Yuen¹

	Problem formulation
gnetic wave; loyment;	Transmitted signal at BS: $\mathbf{x} = \sum_{k=1}^{K} \sqrt{p_k} g_k s_k$, g_k is beam Zero-forcing precoding: SINR at user k is simplified: Objective: Optimize the transmit powers and the mean sum-rate maximization, under QoS constraints. $\max_{\boldsymbol{\Theta}, \mathbf{P}} \sum_{k=1}^{K} \log_2 \left(1 + \frac{p_k}{\sigma^2}\right)$ Non-convex optimization problem: s.t. $\log_2 \left(1 + \frac{p_k}{\sigma^2}\right) \ge R_{min}$ $\operatorname{tr}((\mathbf{H}_2 \mathbf{\Theta} \mathbf{H}_1)^+ \mathbf{P}(\mathbf{H}_2 \mathbf{\Theta}_1)^+ \mathbf{P}(\mathbf{H}_2 \mathbf{\Theta}_1) \le \theta_i \le 2\pi, \forall i = 1, .$
	Proposed Algorithm
h PIM on: M antennas enna users cting units al at user k : $\mathbf{H}_1\mathbf{x} + w_k$, he channel	Alternating maximization: separately and iteratively 1. Optimization with respect to Θ : $\begin{array}{l} \max 1 \\ \Phi = diag[\phi_1,, \phi_1], \phi_i = e^{j\theta_i} \text{s.t. tr}((\mathbf{H}_2 \Phi \mathbf{H}_1)^+ \mathbf{P}(\mathbf{H}_2 \Phi \mathbf{H}_2) \\ \phi_i = 1, \forall i = 1,, N \end{array}$ Solution by employing the <i>majorization-minimization</i> $\mathbf{c}_t = \mathbf{A}^{\mathbf{H}} \mathbf{x}_t $; $c_t^{max} = \max(\mathbf{c}_t)$; $\mathbf{M} = c_t^{max} \mathbf{A} \mathbf{A}^H$; $\mathbf{L} = \mathbf{A} (\operatorname{diag}(\mathbf{c}_t) - N^2 \mathbf{I}) \mathbf{A}^H$; $\mathbf{y} = \frac{-(\mathbf{A}(\operatorname{diag}(\mathbf{c}_t) - c_t^{max} \mathbf{I} - N^2 \mathbf{I}) \mathbf{A}^H)}{c_t^{max} \mathbf{A} \mathbf{A}^H} \mathbf{x}_t$; $\mathbf{x}_{t+1} = e^{j \operatorname{arg}(\mathbf{y})}$; $t \leftarrow t + 1$;
PIM and user k ne channel S and PIM ., $e^{j\theta_N}$]: The ft matrix.	2. Optimization with respect to P: $\max_{\mathbf{P}} \sum_{k=1}^{K} \log_2 \left(1 + \frac{p_k}{\sigma^2} \right)$ s.t. $p_k \ge \sigma^2 (2^{R_{min,k}} - 1), \forall k = 1, \dots, K$ $\operatorname{tr}((\mathbf{H}_2 \Theta \mathbf{H}_1)^+ \mathbf{P}(\mathbf{H}_2 \Theta \mathbf{H}_1)^{+H}) \le P_{max}$ $p_k = [\alpha \lambda_k - \sigma^2]^+ + \sigma^2 (2^{R_{min,k}} - 1) \lambda_k^{-1}$ $\alpha = \frac{1}{q} (P_{max} - \sum_{k=1}^{K} \sigma^2 (2^{R_{min,k}} - 1) \lambda_k^{-1} + \sigma^2 \sum_{k=1}^{q} \lambda_k^{-1})$ Close

$$\gamma_k = \frac{p_k}{\delta^2}$$

natrix Θ for system

$$\mathbf{H}_{1,k}, \forall k = 1, \dots, K$$

 $\mathbf{H}_{1})^{+H} \leq P_{max}$
 \dots, N

y optimize **P** and Θ .

$$(1)^{+H}) \leq P_{max}$$
 Still non-
convex

on (MM) method:

here
$$\mathbf{x} = \operatorname{vec}(\mathbf{\Phi}^{-1})$$

ivex, analyzing the ush–Kuhn–Tucker (KKT) imality conditions yields:

sed-form solution

Numerical results

Reference

[1] A. Zappone, L. Sanguinetti, G. Bacci, E. Jorswieck, and M. Debbah, "Energy-efficient power control: A look at 5G wireless technologies," IEEE Transactions on Signal Processing, vol. 64, no. 7, pp. 1668–1683, April 2016. [2] L. Subrt and P. Pechac, "Controlling propagation environments using intelligent walls," in 2012 6th European Conference on Antennas and Propagation (EUCAP), March 2012, pp. 1–5.

