A Joint Multi-Task Learning Framework For Spoken Language Understanding

Changliang Li¹, Cunliang Kong^{1,2}, Yan Zhao^{1,2}

¹Institute of Automation, Chinese Academy of Sciences ²Beijing Language and Culture University

• 1. Introduction

2. Method

3. Experiment

4. Conclusion

Contents

1. Introduction

A brief introduction of background and our model.

1.1 **SLU**

- Spoken Language Understanding
- A crucial part of spoken dialogue system
- Two basic tasks:
 - Slot Filling
 - Intent Determination

1.1.1 Slot Filling

Sentence	show	flights	from	Boston	To	New	York	today
Slots/Concepts	O	0	0	B-dept	0	B-arr	I-arr	B-date

- Sequence labeling problem
- Traditional machine learning approaches:
 - Hidden Markov models (HMMs)
 - Conditional random field (CRF)
 -

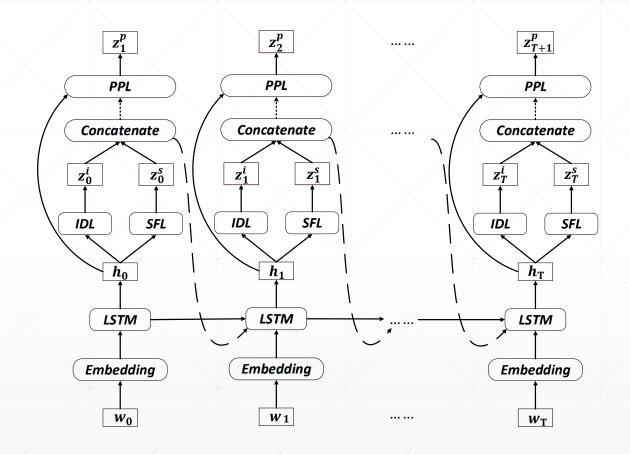
1.1.2 Intent Determination

- Sentence: Show flights from Boston to New York today.
- Intent: Find_Flight

- Classification Problem
- Traditional machine learning approaches:
 - Maximum entropy
 - Support vector machine with linear kernel (LinearSVM)
 - ...

1.4 Our Method

- Joint multi-task learning framework
 - Slot filling
 - Intent determination
 - Part of speech (POS) prediction
- Effectively use of correlation among three tasks
- Additional linguistic information

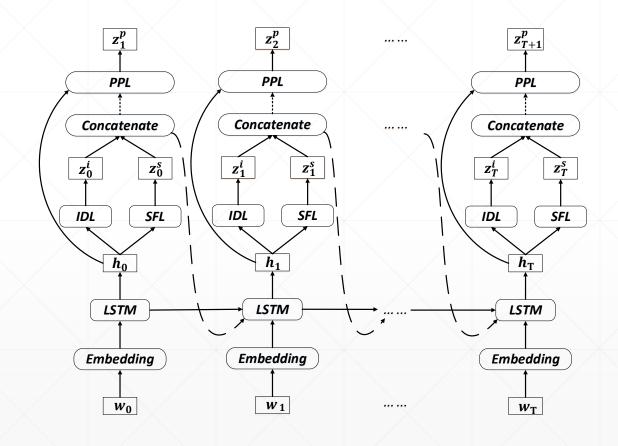


2. Method

Our proposed model and joint learning method.

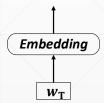
2.1 Our Proposed Model

- The model consists of five layers
 - Embedding Layer
 - LSTM Layer
 - NLU Module
 - Slot Filling Layer (SFL)
 - Intent Determination Layer (IDL)
 - POS Prediction Layer



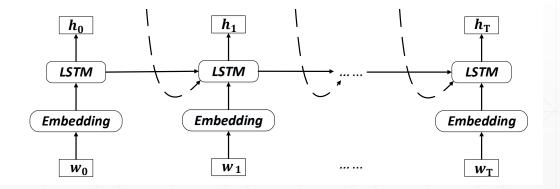
2.1.1 Embedding Layer

- Map input words as word embeddings
- Input
 - A sequence of input words
 - $\mathbf{w} = (w_0, \dots, w_{T+1})$
- Output
 - A sequence of vectors
 - $\mathbf{v} = (v_0, \dots, v_{T+1})$



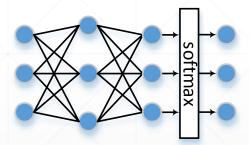
2.1.2 LSTM Layer

- Concatenate these vectors as x_t
 - Current word vector
 - Previous intent label
 - Previous slot label
- Encode these information as h_t
 - $h_t = \text{LSTM}(h_{t-1}, x_t)$

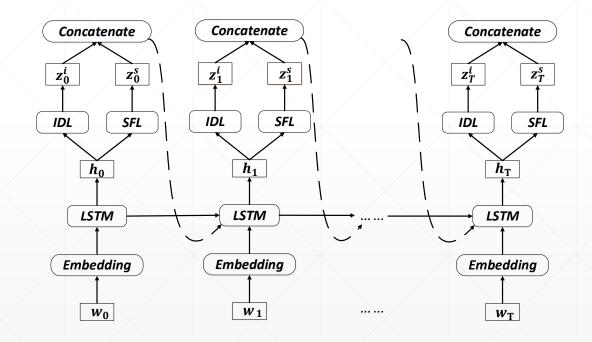


2.1.3 NLU Module

- IDL and SFL have similar architecture
 - A multilayer feedforward neural network
 - A softmax function



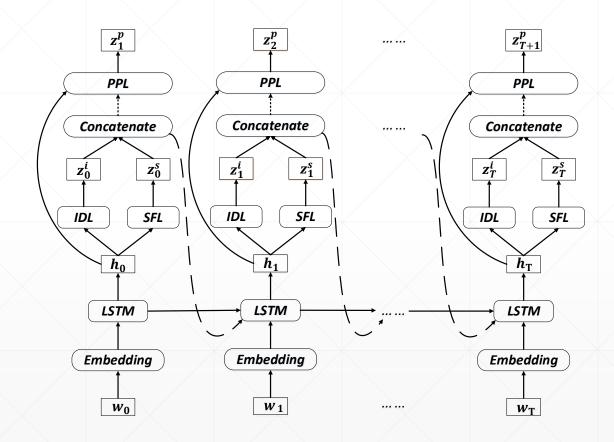
- After the obtain of labels
 - Concatenation
 - Fed into LSTM layer



2.1.4 POS Prediction Layer

- Variation of RNN language model
- Predict the POS tag of next word
- $P(y^p|\mathbf{w}) = \prod_{t=0}^T P(y_{t+1}^p|w_{\leq t}, y_{\leq t}^i, y_{\leq t}^s)$

 Similar architecture with slot filling layer



2.2 Joint Learning

- Cross-entropy loss function
- For three tasks:

$$\mathcal{L}^{s} = -P(\mathbf{y}^{s}) \log P(\mathbf{d}^{s})$$

$$\mathcal{L}^{i} = -P(\mathbf{y}^{i}) \log P(\mathbf{d}^{i})$$

$$\mathcal{L}^{p} = -P(\mathbf{y}^{p}) \log P(\mathbf{d}^{p})$$

- Joint training:
- $\mathcal{L} = \sum_{\mathcal{D}} \left[\mathcal{L}^s + \mathcal{L}^i + \mathcal{L}^p \right] \lambda R(\theta)$

3. Experiment

Experiments conducted on ATIS benchmark.

3.1 Dataset and Metrics

- ATIS (Airline Travel Information Systems) dataset
 - 4978 utterances
 - 127 distinct slot labels
 - 18 different intent types
- Metrics
 - Intent error rate
 - Slot filling F1 score
 - Language model perplexity

3.2 Results

	Model	Intent Error	F1 Score	LM PPL
1	RecNN	4.60	93.22	-
2	RecNN+Viterbi	4.60	93.96	
3	Independent training RNN intent model	2.13	-	-
4	Independent training RNN slot filling model	-	94.91	-
5	Independent training RNN language model	-	-	11.55
6	Basic joint training model	2.02	94.15	11.33
7	Joint model with local intent context	1.90	94.22	11.27
8	Joint model with recurrent intent context	1.90	94.16	10.21
9	Joint model with local & recurrent intent context	1.79	94.18	10.22
10	Joint model with local slot label context	1.79	94.14	11.14
11	Joint model with recurrent slot label context	1.79	94.64	11.19
12	Joint model with local & recurrent slot label context	1.68	94.52	11.17
13	Joint model with <i>local</i> intent + slot label context	1.90	94.13	11.22
14	Joint model with recurrent intent + slot label context	1.57	94.47	10.19
_15	Joint model with local & recurrent intent + slot label context	1.68	94.45	10.28
16	SLU-LM-POS model with recurrent intent + slot label context	1.68	94.57	2.89
17	SLU-LM-POS model with local & recurrent intent + slot label context	1.46	94.81	2.92

4. Conclusion

The advantages of our proposed model.

4. Conclusion

- Joint Learning
 - Make full use of the correlation among multi tasks
 - Obtain additional linguistic information
- State-of-the-art among multi tasks on ATIS dataset.

Q&A

Thanks for Your Attention!