SINGLE DEPTH IMAGE SUPER-RESOLUTION USING CONVOLUTIONAL NEURAL NETWORKS **Baoliang Chen and Cheolkon Jung** School of Electronic Engineering, Xidian University, China

Motivation

- Edges are of particular importance in the textureless depth image.
- We have addressed depth image super-resolution (**DISR**) by high-resolution (HR) edge prediction, instead of HR texture prediction.
- Trained network makes the low-quality edge map more sharp while removing jagged artifacts.
- Guided by the high-quality edge map, we perform DISR.

• Top:

Interpolated (\times 4) depth map by bicubic and its edges.

Bottom:

Our final result and edge map learned from our CNN.

References

- [1] Jaesik Park, Hyeongwoo Kim, Yu Wing Tai, Michael S.Brown, and Inso Kweon, "High quality depth map upsampling for 3d-tof cameras," in *Proceedings of the* IEEE International Conference on Computer Vision, 2012, pp. 1623–1630.
- [2] Radu Timofte, Vincent De, and Luc Van Gool, "Anchored neighborhood regression for fast example-based superresolution," in *Proceedings of the IEEE International* Conference on Computer Vision, 2013, pp. 1920–1927.
- [3] Chao Dong, Change Loy Chen, Kaiming He, and Xiaoou Tang, "Learning a deep convolutional network for image super-resolution," in *Proc. European Conference on* Computer Vision, 2014.
- [4] Jun Xie, Rogerio Schmidt Feris, and Ming Ting Sun, "Edge guided single depth image super resolution," IEEE *Transactions on Image Processing*, vol. 25, no. 1, pp. 428–438, 2015.
- [5] David Ferstl, Matthias Ruther, and Horst Bischof, "Variational depth superresolution using example-based edge representations," in *Proceedings of the IEEE* International Conference on Computer Vision, 2015, pp. 513–521.

Experimental Results

Proposed method produces more visually pleasing results: Object boundaries are sharper along edges, and thus the scene structure are successfully preserved.

Depth SR reconstruction results in *Cones* and *Teddy* when the upsampling factor is 4. Up to down, left to right: Ground truth, Bicubic interpolation, Park et al. [1], ANR [2], SRCNN [3], Xie et al. [4], Ferstl et al. [5], and Proposed method.

Depth SR reconstruction results in Laser Scan dataset. Upsampling factor is 4. Left to right: Ground Truth, Bicubic interpolation, ANR [2], SRCNN [3], Xie et al. [4], Ferstl et al. [5], and proposed method.

Method	x4				x4		
	Cones	Teddy	Tsukuba	Venus	Scan21	Scan30	Scan42
NN	6.0054	4.5466	12.9083	2.9333	2.6474	2.5196	5.6044
Bicubic	3.8635	2.893	8.7103	1.9403	2.0324	1.9764	4.5813
Park et al.[3]	6.5447	4.3366	12.1231	2.2595	N/A	N/A	N/A
Yang et al.[18]	5.139	4.066	13.1748	2.7559	N/A	N/A	N/A
Ferstl et al.[4]	3.9968	2.808	10.0352	1.6643	N/A	N/A	N/A
NE+NNLS	3.4362	2.4887	7.5344	1.6291	1.7313	1.6849	3.5733
SRCNN [19]	4.219	2.456	8.6643	1.9717	1.6732	1.5141	2.783
Aodha et al.[8]	12.6938	4.1113	12.6938	2.6497	2.5983	2.6267	6.1871
Hornacck ct al.[9]	5.4898	5.0212	11.1101	3.5833	2.8585	2.7243	4.5074
Ferstl et al.[11]	3.568	2.6474	7.5356	1.7771	1.4349	1.4298	3.141
Xie et al.[12]	4.4087	3.2768	9.7765	2.3714	1.3993	1.4101	2.691
Proposed	3.1742	2.1357	6.3472	0.9955	1.2453	1.0022	1.5431
Xie et al.[12] Proposed	4.4087 3.1742	3.2768 2.1357	9.7765 6.3472	2.3714 0.9955	1.3993 1.2453	1.410 1.002)1 22

Proposed Method

RMSE Evaluation Results

- from the low-quality one.
- the edge map.
- measurements.

Conclusions

We propose a new CNN based method to acquire the high-quality edge map

We utilize the low-quality edge map to connect broken edges and fill holes in

We use the high-quality edge map to adjust the weight of the regularization term in total variation (TV).

Various experiments on Middlebury stereo dataset and Laser Scan dataset demonstrate the superiority of the proposed method to state-of-the-arts in both qualitative and quantitative