Reference Signal Generation for Broadband ANC Systems in Reverberant Rooms

Contribution

- Develop a time-domain sound field separation method over a sphere.
- Propose to use the outgoing field on a sphere surrounding the primary source as the reference signal for broadband active noise control (ANC) systems in reverberant rooms.

The reference signal problem

Figure 1: A broadband ANC system in a reverberant room.

- In the reverberant room as shown in Fig. 1, there is a primary source \mathbf{a} , two secondary sources \mathbf{a} located at x_{s1} and x_{s2} , respectively, and two error sensors \otimes located at $m{x}_{
 m e1}$ and $m{x}_{
 m e2}$, respectively.
- The broadband ANC system pass a reference signal, which provides advanced information of the primary noise $P_{\rm D}(n, \boldsymbol{x}_{\rm e})$ at the error sensor, through a digital signal processing (DSP) board to generate the secondary noise [1].
- The measurement of the reference sensor at position $\boldsymbol{x}_{\mathrm{r}}$ at time nis

$$P_{\mathrm{r}}(n, \boldsymbol{x}_{\mathrm{r}}) = P_{\mathrm{p}}(n, \boldsymbol{x}_{\mathrm{r}}) + P_{\mathrm{s}}(n, \boldsymbol{x}_{\mathrm{r}}) + P_{\delta}(n, \boldsymbol{x}_{\mathrm{r}}),$$
 (1)

- $-P_{\rm p}(n, \boldsymbol{x}_{\rm r})$ the primary source output,
- $-P_{\rm s}(n, \boldsymbol{x}_{\rm r})$ the secondary source feedback,
- $-P_{\delta}(n, \boldsymbol{x}_{\mathrm{r}})$ the room reverberation.
- The presence of $P_{\rm s}(n, \boldsymbol{x}_{\rm r})$ and $P_{\delta}(n, \boldsymbol{x}_{\rm r})$ reduces the coherence between the reference sensor measurement $P_{\rm r}(n, \boldsymbol{x}_{\rm r})$ and the primary noise $P_{\mathrm{p}}(n, \boldsymbol{x}_{\mathrm{e}})$ at the error sensor.
- The performance of the broadband ANC system deteriorates if the reference sensor measurement $P_{\rm r}(n, \boldsymbol{x}_{\rm r})$ is used as the reference signal directly [1].

Fei Ma, Wen Zhang, Thushara D. Abhayapala

Contact: {fei.ma, wen.zhang, thushara.abhayapala}@anu.edu.au

A time-domain sound field separation method over a sphere

The sound field $P(n, R, \theta, \phi)$ on a sphere S of radius R can be decomposed as [2]

$$P(n, R, \theta, \phi) = \sum_{u=0}^{\infty} \sum_{v=-u}^{u} \alpha_{uv}(n, R) Y_u^v(\theta, \phi),$$
(2)

• (R, θ, ϕ) are spherical coordinates,

 $Y_u^v($

• $Y_u^v(\theta, \phi)$ is the spherical harmonics of order u and degree v

$$\int \sqrt{\frac{(2u+1)(u-|v|)!}{2\pi(u+|v|)!}} \mathcal{P}_{u}^{|v|}(\cos(\theta))\cos(|v|\phi), \quad v > 0,$$

$$\theta, \phi) \equiv \left\{ \sqrt{\frac{(2u+1)(u-|v|)!}{4\pi(u+|v|)!}} \mathcal{P}_{u}^{|v|}(\cos(\theta)), \qquad v = 0. \right.$$

$$\sqrt{\frac{(2u+1)(u-|v|)!}{2\pi(u+|v|)!}} \mathcal{P}_{u}^{|v|}(\cos(\theta))\sin(|v|\phi), \quad v < 0.$$

 $\mathcal{P}_{u}^{|\mathcal{V}|}(\cdot)$ is an associated Legendre function,

• the spherical harmonic coefficients $\alpha_{uv}(n, R)$ are given by [2]

$$\alpha_{uv}(n,R) = \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} P(n,R,\theta,\phi) Y_u^v(\theta,\phi) \sin(\theta) d\theta d\phi.$$
(3)

The outgoing field $P^{O}(n, R, \theta, \phi)$ on a sphere of radius R is

$$P^{\mathcal{O}}(n, R, \theta, \phi) \approx \sum_{u=0}^{N_R} \sum_{v=-u}^{u} \zeta_{uv}^{\mathcal{O}}(n, R) Y_u^v(\theta, \phi), \qquad (4)$$

• $\zeta_{uv}^{O}(n,R)$ are the outgoing field coefficients

$$\begin{split} &\zeta_{uv}^{O}(n,R) \\ &\approx \sum_{q=1}^{Q} \gamma_{q} Y_{u}^{v}(\theta_{q},\phi_{q}) \sum_{n'=0}^{T_{n}} \times \\ & \Big\{ h_{1}^{u}(n') \big[P(n-n',R,\theta_{q},\phi_{q}) - P(n-1-n',R,\theta_{q},\phi_{q}) \big] \\ &+ \rho c h_{2}^{u}(n') \big[V(n-n',R,\theta_{q},\phi_{q}) - V(n-1-n',R,\theta_{q},\phi_{q}) \big] \Big\}, \end{split}$$

- N_R is the truncation order of the outgoing field [3],
- $P(n, R, \theta_q, \phi_q)$ and $V(n, R, \theta_q, \phi_q)$ are the pressure and radial particle velocity, respectively,
- $(\theta_1, \phi_q)_{q=1}^Q$ are sampling point positions,
- T_n is the number of samples corresponding to $2R/c_r$
- c is the speed of sound, ρ is the density of air,
- $h_1^u(n)$ and $h_2^u(n)$ are impulse responses as shown in Fig. 2.

Simulation: Sound field separation on a sphere

• We have three point sources inside of the sphere S of radius R =0.34 m, and another three point sources at outside of the sphere S.

R/c = 1.5 ms.

- scheme.
- We conduct sound field separation over T = 30 ms. The field estimation error is small over the whole sphere S.

sphere S.

Simulation: Noise cancellation at two error sensors

- The simulation environment is shown in Fig. 1. We have a primary source at the origin O, two secondary sources at $(\pm 0.75, 0.75, 0.0)$ m, and two error sensors at $(\pm 0.09, 2.0, 0.0)$ m.
- The primary source generates a broadband noise same as in previous section.

Figure 2: The impulse responses $h_v^u(n)$ for v = 1, 2, u = 1, 2, and

• The point sources generate sounds $\sum_{l=1}^{100} a_l \cos(2\pi (f_0 + \delta_f \times l)n)$, where $f_0 = 100 \text{ Hz}$, $\delta_f = 5 \text{ Hz}$.

• In Eq. (4), we truncate the spherical harmonics to order $N_R = 5$. The pressure and radial partial velocity on the sphere S are sampled at seventy-two points according to the 5-th Gauss sampling

Figure 3: Sound field separation simulation: At time instant n = 23.5ms, the amplitudes of (a) the outgoing field, (b) the total field, (c) the estimated outgoing field, and (d) the field separation error on the

- conventional ANC system [4].
- ment.

the error sensor, respectively.

- the conventional system $\xi_2(n)$.
- by the environmental changes.

Figure 4: Noise cancellation simulation: The noise power reductions at error sensor one (0.09, 2.0, 0.0) m achieved by the proposed system $\xi_1(n)$, and by the conventional system $\xi_2(n)$.

Future work

- in a reverberant room in real-time.

References

- demic press, 1999.
- 2001.
- Conference, Aug 2008, pp. 50–54.

• We propose an ANC system that uses the separated outgoing field as the reference signal, and compare its performance with the

• The outgoing field truncation order is $N_R = 3$. The pressure and radial partial velocity on the sphere \mathbb{S} are sampled at thirty-two points according to the 3-th Gauss sampling scheme.

• We increase the reflection coefficients from [0.71, 0.72, 0.74, 0.76, 0.76]

0.78, 0.8] all to 0.9 at n = 4 s to simulate a time-varying environ-

• Denote the noise power reduction at the error sensor be

$$\xi(n) = 10 \log_{10} \frac{P_e(n)^2}{P_p(n)^2},$$
(5)

where $P_p(n)$ and $P_e(n)$ are the primary noise and residual noise at

• Figure 4 depicts the noise power reductions at error sensor one, i.e., (0.09, 2, 0) m achieved by the proposed system $\xi_1(n)$, and by

• In Fig. 4, the performance of the proposed system is less affected

• Use the sound field separation method for monitoring a machine

• Use high order microphones to reduced the number of microphones needed for sound field separation.

[1] S. M. Kuo and D. R. Morgan, Active Noise Control Systems: Algorithms and DSP Implementations. John Wiley & Sons, Inc., 1995.

[2] E. G. Williams, Fourier acoustics: sound radiation and nearfield acoustical holography. Aca-

[3] D. B. Ward and T. D. Abhayapala, "Reproduction of a plane-wave sound field using an array of loudspeakers," IEEE Transactions on speech and audio processing, vol. 9, no. 6, pp. 697–707,

[4] M. T. Akhtar, M. Abe, M. Kawamata, and M. Mitsuhashi, "A simplified method for online acoustic feedback path modeling in multichannel active noise control systems," in 2008 SICE Annual