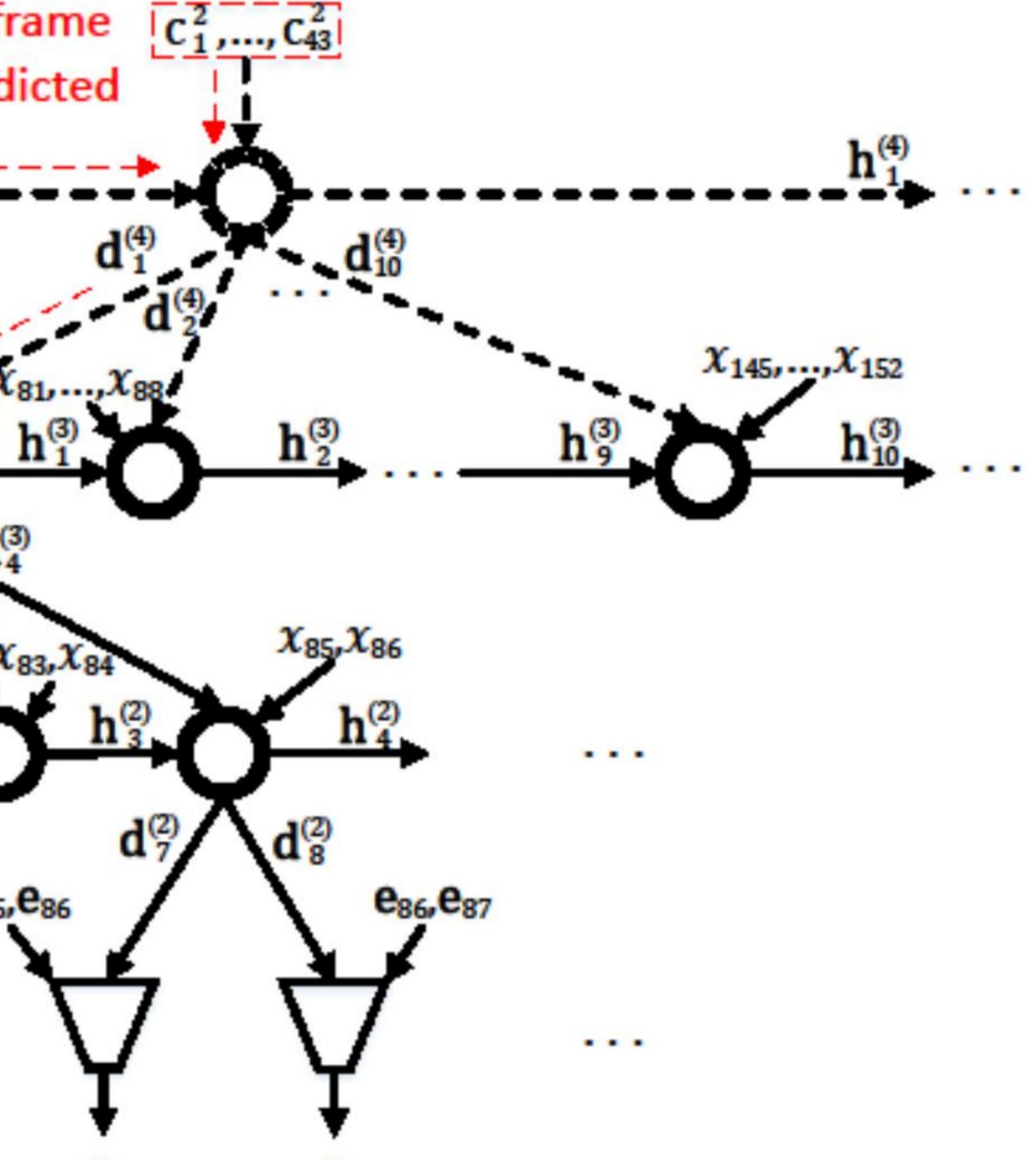

## **SAMPLERNN-BASED NEURAL VOVODER FOR STATISTICAL PARAMETRIC SPEECH SYNTHESIS** Yang Ai, Hong-Chuan Wu, Zhen-Hua Ling

University of Science and Technology of China, Hefei, P.R.China



(b) Neural vocoder

- Conventional vocoder: based on the source-filter model. The vocoder (e.g. STRAIGHT) losts the spectral details and phase information and ignores the nonlinear effects in practical speech production.
- ✓ Neural vocoder: convert acoustic parameters into speech by a designed neural network (e.g. WaveNet and SampleRNN) directly. The neural vocoder can overcome the deficiencies of conventional vocoder.


# National Engineering Laboratory for Speech and Language Information Processing,

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ia, iicici,                                                                                                        | Г.Л.С                | ΙΠΠα                                                                                                                                                                |                                   |                                                                                                                                                     |                                                                 |                                                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                         |                              |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |                      |                                                                                                                                                                     |                                   |                                                                                                                                                     |                                                                 | Acoustic                                                          | features of fra                                                                           | ame [c12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , C <sub>43</sub>                                                                                               |                                                                                         |                              |           |
| • Bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sic uncondi <sup>-</sup>                                                                                           | tional Sa            | ampleRNN                                                                                                                                                            |                                   |                                                                                                                                                     |                                                                 |                                                                   | 60] to be predi                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                         |                              |           |
| <ul> <li>✓ Solid line in figure</li> <li>✓ A waveform generator composed of a hierarchical structure of GRU layers and FF layers in an autoregressive manner</li> <li>✓ Generate one sample conditioned on its</li> </ul>                                                                                                                                                                                                                                                        |                                                                                                                    |                      |                                                                                                                                                                     |                                   | Tier 4<br>200Hz                                                                                                                                     |                                                                 | <b></b>                                                           | ,X <sub>80</sub>                                                                          | d <sup>(4)</sup><br>d <sup>(4)</sup><br>d <sup>(4)</sup><br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d <sup>(4)</sup>                                                                                                | •••••                                                                                   | h <sup>(4)</sup>             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ous samples                                                                                                        | •                    |                                                                                                                                                                     |                                   | Tier 3                                                                                                                                              |                                                                 |                                                                   |                                                                                           | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h <sup>(3)</sup>                                                                                                | h <sup>(3)</sup>                                                                        | h <sup>(3)</sup>             |           |
| <ul> <li>SampleRNN-based neural vocoder</li> <li>Figure: conditional SampleRNN model</li> <li>Dotted lines represent the conditional tier added<br/>on the top of basic unconditional SampleRNN</li> <li>The input of conditional tier is acoustic features<br/>of one frame of samples to be predicted</li> <li>Train to Minimize the cross-entorpy</li> <li>Generate one sample conditioned on its<br/>previous samples and its corresponding acoustic<br/>features</li> </ul> |                                                                                                                    |                      |                                                                                                                                                                     |                                   | 2000Hz                                                                                                                                              | X 79, X 80                                                      | X <sub>81</sub> X                                                 | $d_{1}^{(3)}$ $d_{4}^{(3)}$<br>$d_{2}^{(3)}$ $d_{3}^{(3)}$<br>$d_{3}^{(3)}$<br>$\chi_{2}$ | x <sub>1</sub><br>3, χ <sub>84</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x <sub>85</sub> , x <sub>86</sub>                                                                               |                                                                                         |                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |                      |                                                                                                                                                                     |                                   | Tier 2<br>8000Hz<br>Tier 1                                                                                                                          | d <sup>(2)</sup><br>e <sub>79</sub> ,e <sub>80</sub>            | h <sup>(2)</sup><br>d <sup>(2)</sup><br>e <sub>80</sub>           | h <sup>(2)</sup><br>,e <sub>81</sub> e <sub>85</sub> ,e                                   | h <sup>(2)</sup><br>d <sup>(2)</sup><br>e <sub>86</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h <sup>(2)</sup><br>d <sup>(2)</sup><br>e <sub>86</sub> ,e <sub>87</sub>                                        |                                                                                         |                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exr                                                                                                                | oerim                | ents                                                                                                                                                                |                                   | 16000Hz                                                                                                                                             | Y                                                               | Y                                                                 |                                                                                           | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y                                                                                                               |                                                                                         |                              |           |
| • Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>nditions                                                                                                      |                      |                                                                                                                                                                     |                                   |                                                                                                                                                     | X81                                                             | X82                                                               |                                                                                           | X87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X88                                                                                                             |                                                                                         |                              |           |
| Chinese corpus with 1000 utterances from a female speaker and English and corpus with                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |                      | <ul> <li>Comparison of distortion on the test set of the Chinese corpus</li> <li>Average preference scores (%) on speed quality using the Chinese corpus</li> </ul> |                                   |                                                                                                                                                     |                                                                 |                                                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | eech                                                                                    |                              |           |
| Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000 uttera                                                                                                        |                      | n a male spea<br>st set <sup>.</sup> 800/10                                                                                                                         |                                   |                                                                                                                                                     | STRAIGHT                                                        | WaveNet                                                           | SampleRNN                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STRAIGHT                                                                                                        | WaveNet                                                                                 | SampleRNN                    | N/P       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | training/validation/test set: 800/100/100<br>Composition: 40-order MCCs,1-order power,                             |                      |                                                                                                                                                                     | SNR(dB)                           | 2.4994                                                                                                                                              | 4.7093                                                          | 5.1987                                                            | R                                                                                         | 10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 55.05                                                                                   | 34.40                        |           |
| Acoustie<br>Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>c 1-order F0, and 1-order binary U/V flag.</li> <li>s Type: natural features (R) and predicted</li> </ul> |                      |                                                                                                                                                                     |                                   | MCD(dB)                                                                                                                                             | 1.5744                                                          | 1.6919                                                            | 1.4950                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | 9.17                                                                                    | 37.16                        | 53.67     |
| Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | features (P                                                                                                        | <b>?)</b> .          |                                                                                                                                                                     |                                   | F0-RMSE<br>(cent)                                                                                                                                   | 20.6821                                                         | 14.9475                                                           | 11.4926                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.13                                                                                                            |                                                                                         | 54.80                        | 36.07     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |                      | at CompleDN                                                                                                                                                         | INT                               |                                                                                                                                                     |                                                                 |                                                                   |                                                                                           | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | 40.40                                                                                   |                              |           |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIRAIGHI                                                                                                           |                      | et, SampleRN<br>ation accur                                                                                                                                         |                                   | V/UV error                                                                                                                                          | 2.9172                                                          | 3.5552                                                            | 3.1725                                                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | 10.18                                                                                   | 38.89                        | 50.93     |
| • Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STRAIGHT<br>STRAIGHT<br>Sparison of<br>C) and cros                                                                 | classfic             | ation accur                                                                                                                                                         | acy                               | V/UV error<br>(%)<br>✓ SNR: distor                                                                                                                  | tion in time d                                                  | lomain                                                            | 3.1725                                                                                    | <ul> <li>✓ N/P:</li> <li>✓ Samp</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | no preferenc<br>oleRNN > S1                                                                                     | e<br>RAIGHT                                                                             | 38.89                        | 50.93     |
| • Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nparison of<br>C) and cros                                                                                         | classfic<br>s entrop | ation accur                                                                                                                                                         | acy<br>est set<br>male            | <ul> <li>V/UV error<br/>(%)</li> <li>✓ SNR: distor</li> <li>✓ MCD: distor</li> </ul>                                                                | rtion in time d<br>rtion in mel-c                               | lomain<br>epstrum                                                 |                                                                                           | <ul> <li>✓ N/P:</li> <li>✓ Samp</li> <li>✓ Samp</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | no preferenc<br>oleRNN > S1<br>oleRNN > Wa                                                                      | e<br>FRAIGHT<br>aveNet                                                                  |                              |           |
| • Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nparison of<br>C) and cros                                                                                         | classfic<br>s entrop | ation accur<br>by (CE) on to                                                                                                                                        | acy<br>est set                    | <ul> <li>V/UV error<br/>(%)</li> <li>✓ SNR: distor</li> <li>✓ MCD: distor</li> <li>✓ F0-RMSE a</li> <li>✓ SampleRNI</li> </ul>                      | tion in time d<br>rtion in mel-c<br>and V/UV erro<br>V > WaveNe | Iomain<br>epstrum<br>or: distortion                               | in F0                                                                                     | <ul> <li>✓</li> <li>✓</li></ul> | no preference<br>oleRNN > ST<br>oleRNN > Wa<br>ues of a t-tes<br>redicted feat                                  | RAIGHT<br>RAIGHT<br>aveNet<br>st are all le<br>tures as in                              | ess than 0.00<br>put, Sample | 1<br>RNN- |
| • Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nparison of<br>C) and cros                                                                                         | classfic<br>s entrop | ation accur<br>by (CE) on to<br>English                                                                                                                             | acy<br>est set<br>male<br>SampleR | <ul> <li>V/UV error<br/>(%)</li> <li>✓ SNR: distor</li> <li>✓ MCD: distor</li> <li>✓ F0-RMSE a</li> <li>✓ SampleRNI</li> <li>✓ From SNR,</li> </ul> | tion in time d<br>rtion in mel-c<br>and V/UV erro<br>V > WaveNe | Iomain<br>epstrum<br>or: distortion<br>t> STRAIGI<br>ders can rec | in F0                                                                                     | <ul> <li>✓ N/P:</li> <li>✓ N/P:</li> <li>✓ Samp</li> <li>✓ Samp</li> <li>✓ P-valu</li> <li>✓ For p</li> <li>based</li> <li>✓ Time</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | no preference<br>oleRNN > ST<br>oleRNN > Wa<br>ues of a t-tes<br>redicted feat<br>d vocoder ha<br>consumed feat | RAIGHT<br>RAIGHT<br>aveNet<br>st are all le<br>tures as in<br>as better p<br>or generat | ess than 0.00                | 1<br>RNN- |

|                                                                                               | a, neiei                                                                                                | , F.N.C                                                                                                                                                                                                                                    | ΠΠα           |                                                                                                                  |                                                                                                                                                                                                                                |                         |                             |                                     |                             |                               |                                  |               |                           |       |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------|----------------------------------|---------------|---------------------------|-------|
|                                                                                               |                                                                                                         |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                |                         | Acoustic                    | features of fr                      | ame                         | C <sub>1</sub> <sup>2</sup> , | , C <sub>43</sub>                |               |                           |       |
| • Bas                                                                                         | sic uncond                                                                                              | itional Sa                                                                                                                                                                                                                                 | ampleRNN      |                                                                                                                  |                                                                                                                                                                                                                                |                         |                             | 60] to be pred                      |                             |                               |                                  |               |                           |       |
|                                                                                               | ✓ Solid line in figure                                                                                  |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                |                         |                             |                                     | 4                           |                               |                                  |               | h <sup>(4)</sup>          |       |
|                                                                                               |                                                                                                         |                                                                                                                                                                                                                                            | nposed of a   |                                                                                                                  | 200Hz                                                                                                                                                                                                                          |                         |                             |                                     | -a(4                        | 4)                            | -1 <sup>(4)</sup>                |               |                           |       |
|                                                                                               |                                                                                                         |                                                                                                                                                                                                                                            | RU layers a   | nd FF                                                                                                            |                                                                                                                                                                                                                                |                         |                             |                                     |                             | 1<br>(4)                      | u 10                             |               |                           |       |
| •                                                                                             | Iayers in an autoregressive manner ✓ Generate one sample conditioned on its                             |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                |                         | X73                         | 3,,X <sub>80</sub>                  | · ·                         | u 2                           |                                  |               | $x_{145}, \dots, x_{152}$ |       |
|                                                                                               | previous samples                                                                                        |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                |                         |                             |                                     | 81,,χ <sub>8</sub>          | 88                            | h <sup>(3)</sup>                 | h(3)          | h <sup>(3)</sup>          |       |
| • San                                                                                         | SampleRNN-based neural vocoder                                                                          |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                |                         |                             |                                     |                             | )—                            | <b>1</b> 2                       | 119           |                           |       |
| ✓ Figure                                                                                      | ✓ Figure: conditional SampleRNN model                                                                   |                                                                                                                                                                                                                                            |               |                                                                                                                  | 2000Hz                                                                                                                                                                                                                         |                         |                             |                                     | 0                           | _                             |                                  |               |                           |       |
|                                                                                               | ✓ Dotted lines represent the conditional tier added                                                     |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                | X79, X80                |                             | $d_2^{(3)}$ $d_3^{(3)}$             |                             |                               | X85, X86                         |               |                           |       |
|                                                                                               | on the top of basic unconditional SampleRNN                                                             |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                |                         | X <sub>81</sub> ,X          | 82 X                                | 83, X 84                    |                               | 1 (2)                            |               |                           |       |
| The input of conditional tier is acoustic features<br>of one frame of samples to be predicted |                                                                                                         |                                                                                                                                                                                                                                            |               |                                                                                                                  | Tier 2                                                                                                                                                                                                                         |                         | h <sup>w</sup> <sub>1</sub> |                                     | h <sup>w</sup> <sub>3</sub> | 40                            | h <sub>4</sub>                   |               |                           |       |
| ✓ Train                                                                                       | <ul> <li>Train to Minimize the cross-entorpy</li> </ul>                                                 |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                | <b>d</b> <sup>(2)</sup> | ⊼d <sup>⊘</sup>             |                                     | d                           | <sup>®</sup> X                | d <sup>(2)</sup>                 |               |                           |       |
|                                                                                               |                                                                                                         | •                                                                                                                                                                                                                                          | ditioned on i |                                                                                                                  |                                                                                                                                                                                                                                | e79, e80                | <b>e</b> 8                  | o,e <sub>81</sub> e <sub>85</sub> , | e <sub>86</sub>             | 7                             | e <sub>86</sub> ,e <sub>87</sub> | 7             |                           |       |
| •                                                                                             | •                                                                                                       | s and its (                                                                                                                                                                                                                                | correspondir  | ng acoustic                                                                                                      |                                                                                                                                                                                                                                |                         |                             |                                     |                             | _                             |                                  |               |                           |       |
| TCatur                                                                                        | features                                                                                                |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                |                         |                             |                                     | $\nabla$                    | 7                             | $\nabla$                         |               |                           |       |
|                                                                                               | Experiments                                                                                             |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                | Ţ                       | ¥                           |                                     | ۲                           |                               | Y                                |               |                           |       |
| • Cor                                                                                         | nditions                                                                                                |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                | X 81                    | X82                         |                                     | X 87                        | ,                             | x <sub>88</sub>                  |               |                           |       |
|                                                                                               | Chinese corpus with 1000 utterances from a                                                              |                                                                                                                                                                                                                                            |               | <ul> <li>Comparison of distortion on the test set of</li> <li>Average preference scores (%) on speech</li> </ul> |                                                                                                                                                                                                                                |                         |                             |                                     |                             |                               |                                  |               |                           |       |
| Dotobooc                                                                                      | female sp                                                                                               | female speaker and English and corpus with 1000 utterances from a male speake.                                                                                                                                                             |               |                                                                                                                  | the Chin                                                                                                                                                                                                                       | ese corpus              |                             |                                     |                             | qualit                        | y using the                      | e Chinese     | e corpus                  |       |
| Database                                                                                      | 1000 utter                                                                                              |                                                                                                                                                                                                                                            |               |                                                                                                                  |                                                                                                                                                                                                                                | STRAIGHT                | WaveNet                     | SampleRNN                           |                             |                               | STRAIGHT                         | WaveNet       | SampleRNN                 | N/P   |
|                                                                                               | <b>U</b>                                                                                                | <ul> <li>training/validation/test set: 800/100/100</li> <li>Composition: 40-order MCCs,1-order power,</li> <li>1-order F0,and 1-order binary U/V flag.</li> <li>Type: natural features (R) and predicted</li> <li>features (P).</li> </ul> |               |                                                                                                                  | SNR(dB)                                                                                                                                                                                                                        | 2.4994                  | 4.7093                      | 5.1987                              |                             |                               | 10.55                            |               | 55.05                     | 34.40 |
| Acoustic                                                                                      |                                                                                                         |                                                                                                                                                                                                                                            |               |                                                                                                                  | MCD(dB)                                                                                                                                                                                                                        | 1.5744                  | 1.6919                      | 1.4950                              |                             | R                             |                                  | 9.17          | 37.16                     | 53.67 |
| reatures                                                                                      |                                                                                                         |                                                                                                                                                                                                                                            |               |                                                                                                                  | F0-RMSE                                                                                                                                                                                                                        | 20.6821                 | 14.9475                     | 11.4926                             |                             |                               | 9.13                             |               | 54.80                     | 36.07 |
| Systems                                                                                       | STRAIGH                                                                                                 | T, WaveNe                                                                                                                                                                                                                                  | et, SampleRN  | ١N                                                                                                               | - (cent)                                                                                                                                                                                                                       |                         |                             |                                     |                             | Ρ                             |                                  | 10.18         | 38.89                     | 50.93 |
|                                                                                               | <ul> <li>Systems STRAIGHT, WaveNet, SampleRNN</li> <li>Comparison of classification accuracy</li> </ul> |                                                                                                                                                                                                                                            |               | V/UV error<br>(%)                                                                                                | 2.9172                                                                                                                                                                                                                         | 3.5552                  | 3.1725                      |                                     |                             | <b>_</b>                      |                                  |               |                           |       |
| (AC                                                                                           | C) and cro                                                                                              | ss entrop                                                                                                                                                                                                                                  | oy (CE) on t  | test set                                                                                                         |                                                                                                                                                                                                                                | tion in time d          | lomoin                      |                                     |                             |                               | o preference<br>IeRNN > S        |               |                           |       |
|                                                                                               | Chinese famle English male                                                                              |                                                                                                                                                                                                                                            |               | <ul> <li>✓ SNR: distortion in time domain</li> <li>✓ MCD: distortion in mel-cepstrum</li> </ul>                  |                                                                                                                                                                                                                                |                         |                             | $\checkmark$                        | •                           | leRNN > W                     |                                  |               |                           |       |
|                                                                                               |                                                                                                         |                                                                                                                                                                                                                                            |               | ✓ F0-RMSE and V/UV error: distortion in F0                                                                       |                                                                                                                                                                                                                                |                         |                             |                                     | •                           |                               |                                  | ess than 0.00 |                           |       |
|                                                                                               | WaveNet                                                                                                 | NaveNet NN WaveNet NN                                                                                                                                                                                                                      |               |                                                                                                                  | <ul> <li>✓ SampleRNN &gt; WaveNet&gt; STRAIGHT</li> <li>✓ From SNR, neural vocoders can recover pahse</li> <li>✓ From SNR, neural vocoders can recover pahse</li> <li>✓ From SNR, neural vocoders can recover pahse</li> </ul> |                         |                             |                                     |                             |                               |                                  |               |                           |       |
| ACC(%)                                                                                        | 19.77                                                                                                   | 20.59                                                                                                                                                                                                                                      | 14.16         | 14.51                                                                                                            | <ul> <li>From SNR, neural vocoders can recover pahse<br/>information more accurately.</li> </ul>                                                                                                                               |                         |                             |                                     |                             |                               |                                  | •             | ting one sec              |       |
| CE                                                                                            | 2.7427                                                                                                  | 2.6983                                                                                                                                                                                                                                     | 3.2304        | 3.1570                                                                                                           |                                                                                                                                                                                                                                |                         |                             |                                     |                             |                               |                                  | U             | SampleRNN                 |       |
| √ Sam                                                                                         | pleRNN >                                                                                                | WaveNet                                                                                                                                                                                                                                    |               |                                                                                                                  | Note: Resu                                                                                                                                                                                                                     | Its in English          | corpus sho                  | wn in paper                         |                             | neural                        | vocoder                          |               |                           |       |

SampleRNN > WaveNet





- neural vocoder