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Background and Motivation Distributed Estimation in WSNs

Distributed Estimation in WSNs

@ Why distributed estimation in WSN:
@ Absence of a centralized processor
@ Limited power and communication range for sensors

@ How to perform distributed estimation:
@ Each sensor collect measurements.
@ Each sensor perform inference by exchanging information only with its neighbors
iteratively [1, 2].
@ Typical distributed estimation strategies: consensus [3, 4] and diffusion [5, 6].
@ Diffusion is scalable and robust, and thus preferable [2].
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Background and Motivation RF-based Wireless Power Transfer

RF-based Wireless Power Transfer (WPT)

@ Why RF-based WPT:
@ Advantages: Longer distance, convenient, robust, low cost, etc.
@ Applications: sensor network, consumer electronics, etc.
@ Harvested signal power: P, = P, X Go x d~ % xn
@ «: path loss factor; n: energy conversion efficiency (0.2 — 0.9)
o High-efficiency WPT via beamforming

WP-RX
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Background and Motivation RF-based WPT and Motivation

RF-based WPT and Motivation

@ Example: sensor planform powered by RF-energy harvesting (RF-EH)

@ RF-EH module: “Rectenna” (antenna + rectifying circuit) [7]
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@ Motivation: by capacitating some nodes to perform WPT to their neighbours, to
increase the accuracy of measurement collection and information exchange, and
hence decrease the network mean-square-deviation (MSD)
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System Model System Description

System Description

@ A WSN that performs diffusion least mean-squares (LMS) strategy.
@ Each super nodes (SN) with L antennas performs beamforming to neighboring
CNs. Assume the neighborhoods of any two SNs do not overlap.

@ Some single-antenna common node (CN) can harvest RF-energy from a SN.

® Super Node WPT

ep——
O Common Node Information Exchange

Figure: Example of Network topology
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System Model System Description

Set Notations

@ Sets of all sensors, SNs and CNs are denoted by N, N°* and N¢, resp..
@ Neighborhood of node k including itself: N with cardinality n
@ Set of near-tier CNs (each being within the neighborhood of a SN): N,

@ Set of far-tier CNs (each being not within the neighborhood of a SN): Nf
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System Model LMS Estimation

Distributed estimation via least mean-squares (LMS)

@ Parameter of interest: an unknown M x 1 vector w°

@ Measurement collected by sensor k in iteration 4:
di (i) = g, W° + vk (i), (1)

where uy; is 1 x M random regression vector, vk (i) is measurement noise.

@ Objective of WSN: to compute an estimate w of w* in a distributed manner by
solving LMS problem:

N
mvin ZE [lde (i) — u;w-w|2] . (2)

k=1
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System Model ATC Diffusion

Adapt-then-combine (ATC) diffusion

@ Each node k performs the following update equations [8]

Wi = W1 + ey, [de (i) — up Wi 1], (adapt) (3a)
Wi, = Z il + Vi, (combine) (3b)
leNy,

where uy is step-size, a; are (fixed) combination weights, and vy, ; is the
aggregate noise vy,; = Doien,\ (K} Mk Vik,i, With Vi, ; being the noise vector for
link from node [ € N to node k. Denote the matrix of a;;, by A.

@ Assume that elements of uy; are zero-mean and i.i.d.. Define Ry £ E [uj ;us,i]
andR £ diag (Rl, cee, RN).

@ Both measurement noise v (i) and link noise vy ; are i.i.d., zero-mean, with
variance o} and &7,, respectively. Aggregate noise vy ; is zero-mean, and has
covariance matrix

Re= ) ahondu. @)
1eN\{k}
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System Model Network MSD

(Steady-state) Network MSD

@ Definition of network MSD

N
MSD £ Jlim % ;E [HWD - Wk,i||2] . (5)

@ Give the following notations:

A2 Ay, B2 A" (Iny — MR), F2B® B (6)
M £ diag (paIn, -+, pnIar) (7)
S £ diag (6iRy, -+, ok Ry) (8)
R 2 diag (ﬁl, ,f{N) : )

where ® is the Kronecker product.
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System Model Network MSD

Network MSD (cont.)

Lemma ([8])

Assuming the step-sizes {u} is sufficiently small, the network MSD is given by

_1 T 5\
MSD = — [vec (A MSMA + R)] :
(Iy2a2 — F) ™ - vec(Innr). (10)

Moreover, the MSD in (10) is upper bounded as follows

2 Tr(ATMSMA+R)
< .
MSD 1— [pvar — MR)? (1)

where c is some positive scalar.

@ From (8), (9) and (4), the upper bound (11) depends on the the
measurement-noise power {7} and the link-noise power {57, }. Hence, overall
MSD can thus be reduced, if both the measurement-noise power and link-noise
power are reduced.
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System Model SWIPT from SNs via Beamforming

Simultaneous Wireless Information and Power

Transfer (SWIPT) from SNs

@ Assume indep. Rayleigh fading, i.e., hix,; ~ CN'(0ar, Bix1r) with path loss Biy.
@ Beamformer for SWIPT from SN m

Zm,i = Z \/fmt h:ntl (12)

e e

where ZteNm &me = 1. Then, transmitted signal y i = +/PmSm,iZm, i, With
transmit power p,,.

@ Power splitting at CN &, i.e., the streams /py7«,; for RF-energy harvesting (EH)
and /1 — px7,; for information decoding (ID).
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System Model SWIPT from SNs via Beamforming

SWIPT from SNs (cont.)

@ (Average) Harvested power by CN &

2
pgar(gmk) = EZWL,ivhmk,i {‘VPMPng,ihmk,imm,i :|

@ For ID, the recovered information vector 4,,x,; = ¥m.i + Vmk,i, Where the power
of link noise v,,,i,; is assumed to be proportional to the SINR, i.e.,

oPpmPmk (1 — pr) LEmk (14)
Pm Bk (1 = pr) (1 = &mr) + 07,

where &2, is the power of baseband noise #.,.; for ID, constant o depends on
the digital modulation order, quantization order, etc..
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System Model Harvested Power Allocation at CNs

Harvested Power Allocation and Noise Reduction

@ Default power for CN to perform sensing and transmission are b;*" and b;", resp.

@ Near-tier CN k uses pi" and p} as additional power for measurement sensing
and information transmission, resp..

@ Using higher power to sense more samples and taking the sample mean as the
measurement, the measurement-noise power

~2/, seny __ bif"ai f k Nc
6_\2 _ Ok(pk ) B I €Ny (1 5)
F o2, if k € Nf UN®

@ Since higher transmission power decreases the link-noise, the link-noise power

for node ¢
btk'EI%q . c
WY 4D P Bk (L—1)E o +1) =5 ke, g7k
~2 apgBrg(1—pg) Lk, i s <
52— if k 16
2 a1 p) (1) 437, € N°, g e N} (16)
Eij if k € Nf
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System Model Problem Formulation

Problem Formulation

@ Objective: minimize the upper-bound of network MSD in (11)
@ Variables: beamforming parameters {&, = [m1 &m2 -+ &mn,]” }, and the

power py' = [Pk Phg - pﬁfjm]T allocated to local sensing
@ MSD minimization problem:

3 sen Cik
P1 min m(DP, En) & {7
PU e, ity () kgzN bie + pi

c
+ 2k -+ C4k(§mk):|

can(Emr) — P
s.t. 0<pi" < csk(&mr) — bi
Z Eme=1, VmeN
keNy, \{m}
0<&émr <1, YmeN VkcN;
where c1, and coi are constants depending on k, and the quantities
ek (Emk) = b + PmprBmk (L — 1)éme + 1),

P Bmi(1 = pr) LemrMal,,
PmBmk (1= pr) (L= &mr) + 02,4

cak (Emi) =
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Optimal Solution
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Optimal Solution Problem Decomposition

Primal Decomposition

@ Lower-level subproblems: for each near-tier CN £, to optimize local harvested

sen

power allocation pi:" for given &n,, i.e.,

P2) min N Emk) 2 Gk
(P2) min g 6me) £ g
Cok
4+ ———— 4 car(ém 20a
Can (gmk) — p;en 4k(€ k?) ( )
s.t. 0 <pi" < cap(émr) — by (20b)

@ Higher-level master problems: for each SN m, to update the beamforming
parameters (i.e., coupling variables) &,,, i.e.,

. Clk C2k
P3 E m 21a
( ) mrlnn |:b?€en +pzen* + C3k(£mk) _pzen* +C4k(€ k‘) ( )

k€N
st w1, 21b)
keN, \{m}
0<&mr <1, VkeN;\{m} (21c)

where pi"™* (§mk) is the optimal solution to (P2) for given &
@ The set defined by (21b) and (21c) is denoted by =.
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Optimal Solution Subgradient-based Algorithm

Solution to (P2) and subgradient

@ Closed-form solution of subproblem (P2):

SEeN*x

P =

max { min Cak fm k CQk/Clkbk , C3k (fm,k)—bg ,O
1+ /car/cik

@ Subgradient of subproblem (20):
sk(Pk s Emk) = Ogre Pk Emk) — A" (Emn), (22)
where \* (¢, ) is the optimal Lagrange multiplier w.r.t constraint (20b).

@ Lets, = [sk, (DE™, Emk) Sk, (DE™, Emi)] " -
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Optimal Solution Subgradient-based Algorithm

Subgradient-based Algorithm

@ To find the optimal solutions for each SN m and its neighboring CNs:

Algorithm 1 Subgradient-based Algorhtim:

1: Initialization: a proper step-size ¢, small positive constants
e, iteration index ¢ = 0, some feasible £,,,(0) € E.

2: repeat

: SN m sends &,,4(t) to each neighboring CN &k € N,,,.

4:  Each CN £ finds the optimal power for sensing p;e"™* (t)
and the subgradient s;(pi"*(f).&,k(2)). and sends
them back to SN m.

s: SN m updates &,,, by using the subgradient method

&‘m t -+ 1 [&m - gsm(t)]a y

where [-]z is the projection onto the feasible set E.
t=1t+1.
until |£,,,(t) — &,(t—1)| > ¢

8: return ern £m,(t)s pfre’n* i pf‘?in*(f)

il ]
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Simulation
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Simulation Parameter Setting

Simulation parameters

@ Measure.-noise power for CNs and SNs: uniform in [—25, —10], [—35, —25]dB
@ Link-noise power for all nodes: uniform in [—70, —60] dB
@ Uniform combination [5], i.e., aix = é, if | € Ng, and zero otherwise

O M=2L=4pi=ps=1W, 0" =10"*W, by =102 W, p = 0.01,
Ry = 1.6862 x Io; Path loss: B;x = 1072d;;” (Note: d;x, with unit of meter)

10

y-coordinate

@ Super Node WPT
o (© common Node Information Exchange
0
0 2 4 6 8 10

x-coordinate
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Simulation Parameter Setting

Network MSD performance

@ Achieve 9.85 dB lower MSD than that of the conventional scheme without WPT
@ Steady-state MSD matches theoretical results (10)

(o~ T T T T
—+&— Simulation, conventional
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-10 —~A— simulation, proposed 8
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-20 steady-state MSD, by theory q
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= -30F 1
a
2]
= MSD of the conventional scheme
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Conclusion Conclusion

Conclusion

©Q Fora hybrid WSN performing adapt-then-combine diffusion strategy, optimal
wireless power transfer and harvested power allocation are obtained, to
minimize the network-wide MSD.

@ Numerical results show that the MSD is significantly reduced compared to the
conventional diffusion strategy without WPT, since the proposed scheme
decreases the CNs’ measurement-noise power and increases their transmission

power.
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Conclusion Q&A

Thanks for your attendance!

Questions?
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