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Compression results of CPD-CNNs5s [1] o different data reuse schemes are analyzed for Computation flow
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tiled feature maps of I

e a computation flow which can efficiently

o reduce the computational complexity by 3.5x cache activations and reduce the size of on-

Drawbacks of current accelerators on CPD-CNN5s chip memory is proposed dxd conv] Walatiait - _ e Step 2: Np tiled I, are directly used for the compu-
o . re2 T tation of I,p,, rather than being buffered. Np tiled
e unnecessary on-chip memory ¢ an optlmlzed hardware architecture called sl 11 w maps of Isp,, Will be obtained and sent to on-chip
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e extra data access 1
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Combarisons (b) Nout tiled output feature maps will be calculated
P and sent to off-chip DRAM sequentially.
Area | SRAM | Frequency | MACs | Power T} BW Efficiency : ,
Layer (mm?2)| (KB) (MHz) Num. | (mW) (TO%’Z;S) (GB/s) | (layers/s/MAC) Flgurg 1: (a) The computation flow of EadNet. (b) Com- Architecture
2] CONV2 | 1225 - 200 168 288 0.067 - 0.57 putation patterns
[3] CONV2 16 - 200 512 - 0.205 - 0.81 e The Weight Buffer unit is an SRAM which stores all
EadNet CONV2 6.11 150 600 256 286 3.049 2.76 3.98 convolution Weights
2] CONV3 | 12.25 _ 200 168 266 0.067 _ 1.01
[3] CONV3 16 - 200 512 - 0.205 - 1.13 D e The Activation Buffer unit stores temporary activa-
EadNet || CONV3 | 9.05 | 212 700 256 507 3.19 2.62 10.28 = tons
m
Table 1: Results and Comparisons = PA|[PA] == \PA mac || mac || mac || mac e Each Tiled Registers (TR) unit stores a T’y x Tw tiled
D £ feature map. T;, TR units are employed
; CO ntro I MAC || MAC || MAC || MAC
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