EadNet: Efficient Architecture for Decomposed Convolutional Neural Networks

Motivation

Compression results of CPD-CNNs [1]

- compress the weights by 7x
- reduce the computational complexity by 3.5x

Drawbacks of current accelerators on CPD-CNNs

- unnecessary on-chip memory
- extra data access

Comparisons

	Layer	Area	SRAM	Frequency	MAC
		(mm^2)	(KB)	(MHz)	Num
[2]	CONV2	12.25	-	200	168
[3]	CONV2	16	-	200	512
EadNet	CONV2	6.11	150	600	256
[2]	CONV3	12.25	-	200	168
[3]	CONV3	16	-	200	512
EadNet	CONV3	9.05	212	700	256

Table 1: Results and Comparisons

References

- 1. Astrid M, Lee S I. CP-decomposition with Tensor Power Method for Convolutional Neural Networks Compression[C]. Big Data and Smart Computing (BigComp), 2017 IEEE International Conference on. IEEE, 2017: 115-118.
- 2. Chen Y H, Krishna T, Emer J S, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks[J]. *IEEE Journal of Solid-State Circuits*, 2017, 52(1): 127-138.
- 3. Tu F, Yin S, Ouyang P, et al. Deep convolutional neural network architecture with reconfigurable computation patterns[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(8): 2220-2233.

Fangxuan Sun, Jun Lin and Zhongfeng Wang Department of Electronic Science and Engineering, Nanjing University, P.R. China

а	in Contr	ibutions				Archit			
	 different data reuse schemes are analyzed for CPD-CNNs 								
 a computation flow which can efficiently cache activations and reduce the size of on- chip memory is proposed 									
 an optimized hardware architecture called EadNet is proposed 									
	Power	Ttar	BW	Efficiency	-				
	(mW)	(TOP/s)	(GB/s)	(layers/s/MAC)		Figure			
	288	0.067	-	0.57	-	putati			
	-	0.205	-	0.81					
	286	3.049	2.76	3.98	_				
	266	0.067	_	1.01	·				

1.13

10.28

_

2.62

0.205

3.19

507

tecture

Computation flow

- buffers.

re 1: (a) The computation flow of EadNet. (b) Com- Architecture ion patterns

Figure 2: Overview of architecture

- tions
- layers

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants No. 61774082 and 61604068; the Fundamental Research Funds for the Central Universities under Grant No. 021014380065

• Step 1: N_{in} maps are sent to PAs in serial to get N_P tiled feature maps of I_s

• Step 2: N_P tiled I_s are directly used for the computation of I_{shw} rather than being buffered. N_P tiled maps of I_{shw} will be obtained and sent to on-chip

• Step 3: After all R tiled maps of I_{shw} are gotten, N_{out} tiled output feature maps will be calculated and sent to off-chip DRAM sequentially.

• The Weight Buffer unit is an SRAM which stores all convolution weights

• The Activation Buffer unit stores temporary activa-

• Each Tiled Registers (TR) unit stores a $T_H \times T_W$ tiled feature map. T_{in} TR units are employed

• PA is used for all computations in convolutional