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Motivation

Compression results of CPD-CNNs [1]

• compress the weights by 7x

• reduce the computational complexity by 3.5x

Drawbacks of current accelerators on CPD-CNNs

• unnecessary on-chip memory

• extra data access

Main Contributions

• different data reuse schemes are analyzed for
CPD-CNNs

• a computation flow which can efficiently
cache activations and reduce the size of on-
chip memory is proposed

• an optimized hardware architecture called
EadNet is proposed

Architecture
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Figure 1: (a) The computation flow of EadNet. (b) Com-
putation patterns
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Figure 2: Overview of architecture

Computation flow

• Step 1: Nin maps are sent to PAs in serial to get NP

tiled feature maps of Is

• Step 2: NP tiled Is are directly used for the compu-
tation of Ishw rather than being buffered. NP tiled
maps of Ishw will be obtained and sent to on-chip
buffers.

• Step 3: After all R tiled maps of Ishw are gotten,
Nout tiled output feature maps will be calculated
and sent to off-chip DRAM sequentially.

Architecture

• The Weight Buffer unit is an SRAM which stores all
convolution weights

• The Activation Buffer unit stores temporary activa-
tions

• Each Tiled Registers (TR) unit stores a TH×TW tiled
feature map. Tin TR units are employed

• PA is used for all computations in convolutional
layers
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Comparisons

Layer Area
(mm2)

SRAM
(KB)

Frequency
(MHz)

MACs
Num.

Power
(mW)

Ttyp

(TOP/s)
BW

(GB/s)
Efficiency

(layers/s/MAC)
[2] CONV2 12.25 - 200 168 288 0.067 - 0.57
[3] CONV2 16 - 200 512 - 0.205 - 0.81

EadNet CONV2 6.11 150 600 256 286 3.049 2.76 3.98

[2] CONV3 12.25 - 200 168 266 0.067 - 1.01
[3] CONV3 16 - 200 512 - 0.205 - 1.13

EadNet CONV3 9.05 212 700 256 507 3.19 2.62 10.28

Table 1: Results and Comparisons
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